These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23822293)

  • 1. Resonance energy transfer: influence of neighboring matter absorbing in the wavelength region of the acceptor.
    Andrews DL; Ford JS
    J Chem Phys; 2013 Jul; 139(1):014107. PubMed ID: 23822293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance energy transfer: when a dipole fails.
    Andrews DL; Leeder JM
    J Chem Phys; 2009 May; 130(18):184504. PubMed ID: 19449933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of the dispersion interaction in an energy transfer system.
    Andrews DL; Bradshaw DS; Leeder JM; Rodríguez J
    Phys Chem Chem Phys; 2008 Sep; 10(34):5250-5. PubMed ID: 18728867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of medium chirality on the rate of resonance energy transfer.
    Rodriguez JJ; Salam A
    J Phys Chem B; 2011 May; 115(18):5183-90. PubMed ID: 20731405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the interactions between molecules in an off-resonant laser beam: Evaluating the response to energy migration and optically induced pair forces.
    Andrews DL; Leeder JM
    J Chem Phys; 2009 Jan; 130(3):034504. PubMed ID: 19173528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized emitting state and energy transfer properties of quadrupolar chromophores and (multi)branched derivatives.
    Yan L; Chen X; He Q; Wang Y; Wang X; Guo Q; Bai F; Xia A; Aumiler D; Vdović S; Lin S
    J Phys Chem A; 2012 Aug; 116(34):8693-705. PubMed ID: 22882016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy.
    Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B
    J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics.
    Salam A
    J Chem Phys; 2005 Jan; 122(4):44112. PubMed ID: 15740240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching.
    Bradshaw DS; Andrews DL
    J Chem Phys; 2008 Apr; 128(14):144506. PubMed ID: 18412458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the nature of long range electronic coupling in a medium: distance and orientational dependence for chromophores in molecular aggregates.
    Lock MP; Andrews DL; Jones GA
    J Chem Phys; 2014 Jan; 140(4):044103. PubMed ID: 25669501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically nonlinear energy transfer in light-harvesting dendrimers.
    Andrews DL; Bradshaw DS
    J Chem Phys; 2004 Aug; 121(5):2445-54. PubMed ID: 15260800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling.
    Jang S
    J Chem Phys; 2007 Nov; 127(17):174710. PubMed ID: 17994845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Förster resonant energy transfer in orthogonally arranged chromophores.
    Langhals H; Esterbauer AJ; Walter A; Riedle E; Pugliesi I
    J Am Chem Soc; 2010 Dec; 132(47):16777-82. PubMed ID: 21053962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the conveyance of angular momentum in electronic energy transfer.
    Andrews DL
    Phys Chem Chem Phys; 2010 Jul; 12(27):7409-17. PubMed ID: 20539887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the Förster theory of excitation energy transfer: importance of higher-order processes in supramolecular antenna systems.
    May V
    Dalton Trans; 2009 Dec; (45):10086-105. PubMed ID: 19904437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemical studies of three-photon absorption of some stilbenoid chromophores.
    Sałek P; Agren H; Baev A; Prasad PN
    J Phys Chem A; 2005 Dec; 109(48):11037-42. PubMed ID: 16331948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.