These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23822295)

  • 1. Finite-field implementation of NMR chemical shieldings for molecules: direct and converse gauge-including projector-augmented-wave methods.
    Vasconcelos F; de Wijs GA; Havenith RW; Marsman M; Kresse G
    J Chem Phys; 2013 Jul; 139(1):014109. PubMed ID: 23822295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing GIPAW with numerically exact chemical shieldings: The role of two-center contributions to the induced current.
    de Wijs GA; Kresse G; Havenith RWA; Marsman M
    J Chem Phys; 2021 Dec; 155(23):234101. PubMed ID: 34937373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance predictions for graphenes: concentric finite models and extrapolation to large systems.
    Vähäkangas J; Ikäläinen S; Lantto P; Vaara J
    Phys Chem Chem Phys; 2013 Apr; 15(13):4634-41. PubMed ID: 23422931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles calculation of 17O and 25Mg NMR shieldings in MgO at finite temperature: rovibrational effect in solids.
    Rossano S; Mauri F; Pickard CJ; Farnan I
    J Phys Chem B; 2005 Apr; 109(15):7245-50. PubMed ID: 16851828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations.
    de Wijs GA; Laskowski R; Blaha P; Havenith RW; Kresse G; Marsman M
    J Chem Phys; 2017 Feb; 146(6):064115. PubMed ID: 28201885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method.
    Beer M; Kussmann J; Ochsenfeld C
    J Chem Phys; 2011 Feb; 134(7):074102. PubMed ID: 21341823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals.
    Komorovský S; Repiský M; Malkina OL; Malkin VG
    J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of effective core potentials in the calculation of magnetic properties, such as magnetizabilites and magnetic shieldings.
    van Wüllen C
    J Chem Phys; 2012 Mar; 136(11):114110. PubMed ID: 22443751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.
    Cuny J; Furet E; Gautier R; Le Pollès L; Pickard CJ; d'Espinose de Lacaillerie JB
    Chemphyschem; 2009 Dec; 10(18):3320-9. PubMed ID: 19937665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of a hybrid DFT method for calculating NMR shieldings using Slater-type orbitals with spin-orbital coupling included. Applications to 187Os, 195Pt, and 13C in heavy-metal complexes.
    Krykunov M; Ziegler T; van Lenthe E
    J Phys Chem A; 2009 Oct; 113(43):11495-500. PubMed ID: 19731903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation.
    Green TF; Yates JR
    J Chem Phys; 2014 Jun; 140(23):234106. PubMed ID: 24952522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of multinuclear magnetic resonance and gauge-including projector-augmented-wave calculations to the study of solid group 13 chlorides.
    Chapman RP; Bryce DL
    Phys Chem Chem Phys; 2009 Aug; 11(32):6987-98. PubMed ID: 19652833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonperturbative ab initio calculations in strong magnetic fields using London orbitals.
    Tellgren EI; Soncini A; Helgaker T
    J Chem Phys; 2008 Oct; 129(15):154114. PubMed ID: 19045183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory.
    Ilias M; Saue T; Enevoldsen T; Jensen HJ
    J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.
    Hartman JD; Monaco S; Schatschneider B; Beran GJ
    J Chem Phys; 2015 Sep; 143(10):102809. PubMed ID: 26374002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of nuclear magnetic resonance shieldings using frozen-density embedding.
    Jacob CR; Visscher L
    J Chem Phys; 2006 Nov; 125(19):194104. PubMed ID: 17129086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvation and crystal effects in bilirubin studied by NMR spectroscopy and density functional theory.
    Rohmer T; Matysik J; Mark F
    J Phys Chem A; 2011 Oct; 115(42):11696-714. PubMed ID: 21846145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sublinear scaling quantum chemical methods for magnetic shieldings in large molecules.
    Yuan M; Zhang Y; Qu Z; Xiao Y; Liu W
    J Chem Phys; 2019 Apr; 150(15):154113. PubMed ID: 31005100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic linear response properties calculations with the Gaussian and augmented-plane-wave method.
    Weber V; Iannuzzi M; Giani S; Hutter J; Declerck R; Waroquier M
    J Chem Phys; 2009 Jul; 131(1):014106. PubMed ID: 19586095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear shieldings with the SSB-D functional.
    Armangué L; Solà M; Swart M
    J Phys Chem A; 2011 Feb; 115(7):1250-6. PubMed ID: 21299251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.