These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 23822321)

  • 1. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).
    Maurer RJ; Reuter K
    J Chem Phys; 2013 Jul; 139(1):014708. PubMed ID: 23822321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing computationally efficient isomerization dynamics: ΔSCF density-functional theory study of azobenzene molecular switching.
    Maurer RJ; Reuter K
    J Chem Phys; 2011 Dec; 135(22):224303. PubMed ID: 22168690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential--energy surfaces for excited states in extended systems.
    Hellman A; Razaznejad B; Lundqvist BI
    J Chem Phys; 2004 Mar; 120(10):4593-602. PubMed ID: 15267318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation of the pure adiabatic state in Ehrenfest dynamics of the photoisomerization of molecules.
    Miyamoto Y; Tateyama Y; Oyama N; Ohno T
    Sci Rep; 2015 Dec; 5():18220. PubMed ID: 26658633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.
    Kowalczyk T; Le K; Irle S
    J Chem Theory Comput; 2016 Jan; 12(1):313-23. PubMed ID: 26587877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regarding the validity of the time-dependent Kohn-Sham approach for electron-nuclear dynamics via trajectory surface hopping.
    Fischer SA; Habenicht BF; Madrid AB; Duncan WR; Prezhdo OV
    J Chem Phys; 2011 Jan; 134(2):024102. PubMed ID: 21241075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonadiabatic reaction of energetic molecules.
    Bhattacharya A; Guo Y; Bernstein ER
    Acc Chem Res; 2010 Dec; 43(12):1476-85. PubMed ID: 20931955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculating excited state properties using Kohn-Sham density functional theory.
    Hanson-Heine MW; George MW; Besley NA
    J Chem Phys; 2013 Feb; 138(6):064101. PubMed ID: 23425455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling energy level alignment at organic interfaces and density functional theory.
    Flores F; Ortega J; Vázquez H
    Phys Chem Chem Phys; 2009 Oct; 11(39):8658-75. PubMed ID: 20449007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational design of metal-supported molecular switches: transient ion formation during light- and electron-induced isomerisation of azobenzene.
    Maurer RJ; Reuter K
    J Phys Condens Matter; 2019 Jan; 31(4):044003. PubMed ID: 30523934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of van der Waals interaction in forming molecule-metal junctions: flat organic molecules on the Au(111) surface.
    Mura M; Gulans A; Thonhauser T; Kantorovich L
    Phys Chem Chem Phys; 2010 May; 12(18):4759-67. PubMed ID: 20428556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Δ Self-Consistent Field Method for Natural Anthocyanidin Dyes.
    Terranova U; Bowler DR
    J Chem Theory Comput; 2013 Jul; 9(7):3181-8. PubMed ID: 26583995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic excited states of Si(100) and organic molecules adsorbed on Si(100).
    Besley NA; Blundy AJ
    J Phys Chem B; 2006 Feb; 110(4):1701-10. PubMed ID: 16471736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States.
    Zhang J; Tang Z; Zhang X; Zhu H; Zhao R; Lu Y; Gao J
    J Chem Theory Comput; 2023 Mar; 19(6):1777-1789. PubMed ID: 36917687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorbate-adsorbate interactions and chemisorption at different coverages studied by accurate ab initio calculations: CO on transition metal surfaces.
    Mason SE; Grinberg I; Rappe AM
    J Phys Chem B; 2006 Mar; 110(8):3816-22. PubMed ID: 16494441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density matrix treatment of the nonmarkovian dissipative dynamics of adsorbates on metal surfaces.
    Leathers AS; Micha DA
    J Phys Chem A; 2006 Jan; 110(2):749-55. PubMed ID: 16405349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Many-body dispersion effects in the binding of adsorbates on metal surfaces.
    Maurer RJ; Ruiz VG; Tkatchenko A
    J Chem Phys; 2015 Sep; 143(10):102808. PubMed ID: 26374001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited-State Potential Energy Surfaces, Conical Intersections, and Analytical Gradients from Ground-State Density Functional Theory.
    Mei Y; Yang W
    J Phys Chem Lett; 2019 May; 10(10):2538-2545. PubMed ID: 31038964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing of an adsorbate-specific excited state on an organic insulating surface by two-photon photoemission spectroscopy.
    Shibuta M; Hirata N; Eguchi T; Nakajima A
    J Am Chem Soc; 2014 Feb; 136(5):1825-31. PubMed ID: 24451024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.