These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23822359)

  • 1. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments.
    Konno Y; Jin Y; Uchiumi T; Nagao J
    Rev Sci Instrum; 2013 Jun; 84(6):064501. PubMed ID: 23822359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of triaxial testing and pore-scale visualization of methane hydrate bearing sediments.
    Seol Y; Lei L; Choi JH; Jarvis K; Hill D
    Rev Sci Instrum; 2019 Dec; 90(12):124504. PubMed ID: 31893836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments.
    Seol Y; Choi JH; Dai S
    Rev Sci Instrum; 2014 Aug; 85(8):084501. PubMed ID: 25173288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation.
    Lapham LL; Wilson RM; Chanton JP
    Rapid Commun Mass Spectrom; 2012 Jan; 26(1):32-6. PubMed ID: 22215575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin.
    Yoshioka H; Maruyama A; Nakamura T; Higashi Y; Fuse H; Sakata S; Bartlett DH
    Geobiology; 2010 Jun; 8(3):223-33. PubMed ID: 20059557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: microscale imaging using X-ray computed tomography.
    Jin Y; Konno Y; Nagao J
    Rev Sci Instrum; 2014 Sep; 85(9):094502. PubMed ID: 25273747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of methane hydrate by pressurization with He or N2 gas.
    Lu H; Tsuji Y; Ripmeester JA
    J Phys Chem B; 2007 Dec; 111(51):14163-8. PubMed ID: 18062683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A testing assembly for combination measurements on gas hydrate-bearing sediments using x-ray computed tomography and low-field nuclear magnetic resonance.
    Zhang Z; Liu L; Li C; Liu C; Ning F; Liu Z; Meng Q
    Rev Sci Instrum; 2021 Aug; 92(8):085108. PubMed ID: 34470383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition.
    Buchanan P; Soper AK; Thompson H; Westacott RE; Creek JL; Hobson G; Koh CA
    J Chem Phys; 2005 Oct; 123(16):164507. PubMed ID: 16268712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-scale observations of natural hydrate-bearing sediments via pressure core sub-coring and micro-CT scanning.
    Lei L; Park T; Jarvis K; Pan L; Tepecik I; Zhao Y; Ge Z; Choi JH; Gai X; Galindo-Torres SA; Boswell R; Dai S; Seol Y
    Sci Rep; 2022 Mar; 12(1):3471. PubMed ID: 35236868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of methane from gas hydrates intercalated within natural sediments using CO(2) and a CO(2)/N(2) gas mixture.
    Koh DY; Kang H; Kim DO; Park J; Cha M; Lee H
    ChemSusChem; 2012 Aug; 5(8):1443-8. PubMed ID: 22730158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite thermal conductivity in a large heterogeneous porous methane hydrate sample.
    Gupta A; Kneafsey TJ; Moridis GJ; Seol Y; Kowalsky MB; Sloan ED
    J Phys Chem B; 2006 Aug; 110(33):16384-92. PubMed ID: 16913767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural characteristics of natural gas hydrates hosted in various sand sediments.
    Zhao J; Yang L; Liu Y; Song Y
    Phys Chem Chem Phys; 2015 Sep; 17(35):22632-41. PubMed ID: 26277891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal constraints on hydrate-controlled methane seepage off Svalbard.
    Berndt C; Feseker T; Treude T; Krastel S; Liebetrau V; Niemann H; Bertics VJ; Dumke I; Dünnbier K; Ferré B; Graves C; Gross F; Hissmann K; Hühnerbach V; Krause S; Lieser K; Schauer J; Steinle L
    Science; 2014 Jan; 343(6168):284-7. PubMed ID: 24385604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
    Alavi S; Ripmeester JA
    J Chem Phys; 2010 Apr; 132(14):144703. PubMed ID: 20406006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Relative Permeability Model for Gas and Water Flow in Hydrate-Bearing Sediments With Laboratory and Field-Scale Application.
    Singh H; Myshakin EM; Seol Y
    Sci Rep; 2020 Mar; 10(1):5697. PubMed ID: 32231238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic properties of methane hydrate in quartz powder.
    Voronov VP; Gorodetskii EE; Safonov SS
    J Phys Chem B; 2007 Oct; 111(39):11486-96. PubMed ID: 17845024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crustal fingering facilitates free-gas methane migration through the hydrate stability zone.
    Fu X; Jimenez-Martinez J; Nguyen TP; Carey JW; Viswanathan H; Cueto-Felgueroso L; Juanes R
    Proc Natl Acad Sci U S A; 2020 Dec; 117(50):31660-31664. PubMed ID: 33257583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.
    Yang L; Zhou W; Xue K; Wei R; Ling Z
    Rev Sci Instrum; 2018 May; 89(5):054904. PubMed ID: 29864831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness.
    Wood WT; Gettrust JF; Chapman NR; Spence GD; Hyndman RD
    Nature; 2002 Dec; 420(6916):656-60. PubMed ID: 12478290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.