These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
439 related articles for article (PubMed ID: 23822457)
1. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Huang HW Med Phys; 2013 Jul; 40(7):073303. PubMed ID: 23822457 [TBL] [Abstract][Full Text] [Related]
2. Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection? González-Suárez A; Trujillo M; Burdío F; Andaluz A; Berjano E Med Phys; 2014 Aug; 41(8):083301. PubMed ID: 25086561 [TBL] [Abstract][Full Text] [Related]
3. Multipolar RFA of the liver: Influence of intrahepatic vessels on ablation zones and appropriateness of CECT in detecting ablation dimensions - Results of an in-vivo porcine liver model. Vahldiek JL; Erxleben C; Bressem KK; Gemeinhardt O; Poch F; Hiebl B; Lehmann KS; Hamm B; Niehues SM Clin Hemorheol Microcirc; 2018; 70(4):467-476. PubMed ID: 30347610 [TBL] [Abstract][Full Text] [Related]
4. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Patterson EJ; Scudamore CH; Owen DA; Nagy AG; Buczkowski AK Ann Surg; 1998 Apr; 227(4):559-65. PubMed ID: 9563546 [TBL] [Abstract][Full Text] [Related]
5. Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Lee JM; Han JK; Kim HC; Choi YH; Kim SH; Choi JY; Choi BI Invest Radiol; 2007 Mar; 42(3):163-71. PubMed ID: 17287646 [TBL] [Abstract][Full Text] [Related]
6. Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. Trujillo M; Bon J; José Rivera M; Burdío F; Berjano E Int J Hyperthermia; 2016 Dec; 32(8):931-939. PubMed ID: 27452352 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a tissue-mimicking thermochromic phantom for radiofrequency ablation. Mikhail AS; Negussie AH; Graham C; Mathew M; Wood BJ; Partanen A Med Phys; 2016 Jul; 43(7):4304. PubMed ID: 27370145 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation. Welp C; Siebers S; Ermert H; Werner J Biomed Tech (Berl); 2006 Dec; 51(5-6):337-46. PubMed ID: 17155870 [TBL] [Abstract][Full Text] [Related]
9. Intraoperative radiofrequency ablation using a loop internally cooled-perfusion electrode: in vitro and in vivo experiments. Lee JM; Han JK; Eoh H; Kim SH; Lee JY; Lee MW; Choi BI J Surg Res; 2006 Apr; 131(2):215-24. PubMed ID: 16427086 [TBL] [Abstract][Full Text] [Related]
10. A study of the sink effect by blood vessels in radiofrequency ablation. Zorbas G; Samaras T Comput Biol Med; 2015 Feb; 57():182-6. PubMed ID: 25575184 [TBL] [Abstract][Full Text] [Related]
11. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging. Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470 [TBL] [Abstract][Full Text] [Related]
13. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity. Trujillo M; Bon J; Berjano E Int J Hyperthermia; 2017 Sep; 33(6):624-634. PubMed ID: 28540782 [TBL] [Abstract][Full Text] [Related]
14. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. Ahmed M; Liu Z; Humphries S; Goldberg SN Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580 [TBL] [Abstract][Full Text] [Related]
15. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots. Busch MH; Vollmann W; Grönemeyer DH Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878 [TBL] [Abstract][Full Text] [Related]
16. Physical modeling of microwave ablation zone clinical margin variance. Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574 [TBL] [Abstract][Full Text] [Related]
17. Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation. dos Santos I; Haemmerich D; Pinheiro Cda S; da Rocha AF Biomed Eng Online; 2008 Jul; 7():21. PubMed ID: 18620566 [TBL] [Abstract][Full Text] [Related]
18. Parametric study of radiofrequency ablation in the clinical practice with the use of two-compartment numerical models. Zorbas G; Samaras T Electromagn Biol Med; 2013 Jun; 32(2):236-43. PubMed ID: 23675627 [TBL] [Abstract][Full Text] [Related]
19. Computer modeling of factors that affect the minimum safety distance required for radiofrequency ablation near adjacent nontarget structures. Liu Z; Ahmed M; Gervais D; Humphries S; Goldberg SN J Vasc Interv Radiol; 2008 Jul; 19(7):1079-86. PubMed ID: 18589323 [TBL] [Abstract][Full Text] [Related]
20. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Pillai K; Akhter J; Chua TC; Shehata M; Alzahrani N; Al-Alem I; Morris DL Medicine (Baltimore); 2015 Mar; 94(9):e580. PubMed ID: 25738477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]