These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 23822470)
1. Characterization of multiscroll attractors using Lyapunov exponents and Lagrangian coherent structures. Fazanaro FI; Soriano DC; Suyama R; Attux R; Madrid MK; de Oliveira JR Chaos; 2013 Jun; 23(2):023105. PubMed ID: 23822470 [TBL] [Abstract][Full Text] [Related]
2. Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. Deng W; Lü J Chaos; 2006 Dec; 16(4):043120. PubMed ID: 17199398 [TBL] [Abstract][Full Text] [Related]
3. Multi-scroll hidden attractors with two stable equilibrium points. Deng Q; Wang C Chaos; 2019 Sep; 29(9):093112. PubMed ID: 31575154 [TBL] [Abstract][Full Text] [Related]
4. Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction. Sadlo F; Peikert R IEEE Trans Vis Comput Graph; 2007; 13(6):1456-63. PubMed ID: 17968097 [TBL] [Abstract][Full Text] [Related]
5. Universal scaling of Lyapunov exponents in coupled chaotic oscillators. Liu Z; Lai YC; Matías MA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045203. PubMed ID: 12786425 [TBL] [Abstract][Full Text] [Related]
6. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions. Thiffeault JL; Boozer AH Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437 [TBL] [Abstract][Full Text] [Related]
7. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
8. Characterization of noise-induced strange nonchaotic attractors. Wang X; Lai YC; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173 [TBL] [Abstract][Full Text] [Related]
9. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection. Karimi A; Paul MR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550 [TBL] [Abstract][Full Text] [Related]
10. Chaotic attractors with separated scrolls. Bouallegue K Chaos; 2015 Jul; 25(7):073108. PubMed ID: 26232959 [TBL] [Abstract][Full Text] [Related]
11. Experimental realization of a multiscroll chaotic oscillator with optimal maximum Lyapunov exponent. Tlelo-Cuautle E; Pano-Azucena AD; Carbajal-Gomez VH; Sanchez-Sanchez M ScientificWorldJournal; 2014; 2014():303614. PubMed ID: 24883379 [TBL] [Abstract][Full Text] [Related]
12. Design and implementation of grid multi-scroll fractional-order chaotic attractors. Chen L; Pan W; Wu R; Tenreiro Machado JA; Lopes AM Chaos; 2016 Aug; 26(8):084303. PubMed ID: 27586620 [TBL] [Abstract][Full Text] [Related]
14. Positive Lyapunov exponents calculated from time series of strange nonchaotic attractors. Shuai JW; Lian J; Hahn PJ; Durand DM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026220. PubMed ID: 11497690 [TBL] [Abstract][Full Text] [Related]
15. Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators. Ryabov VB Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016214. PubMed ID: 12241468 [TBL] [Abstract][Full Text] [Related]
16. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Cao Q; Wiercigroch M; Pavlovskaia EE; Thompson JM; Grebogi C Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1865):635-52. PubMed ID: 17698466 [TBL] [Abstract][Full Text] [Related]
17. Hyperchaotic qualities of the ball motion in a ball milling device. Caravati C; Delogu F; Cocco G; Rustici M Chaos; 1999 Mar; 9(1):219-226. PubMed ID: 12779817 [TBL] [Abstract][Full Text] [Related]
18. Characteristic distributions of finite-time Lyapunov exponents. Prasad A; Ramaswamy R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2761-6. PubMed ID: 11970080 [TBL] [Abstract][Full Text] [Related]
19. Cycles homoclinic to chaotic sets; robustness and resonance. Ashwin P Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649 [TBL] [Abstract][Full Text] [Related]
20. Covariant Lyapunov vectors from reconstructed dynamics: the geometry behind true and spurious Lyapunov exponents. Yang HL; Radons G; Kantz H Phys Rev Lett; 2012 Dec; 109(24):244101. PubMed ID: 23368323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]