These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23822508)

  • 1. Dynamics simulations for engineering macromolecular interactions.
    Robinson-Mosher A; Shinar T; Silver PA; Way J
    Chaos; 2013 Jun; 23(2):025110. PubMed ID: 23822508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately.
    Peulen TO; Opanasyuk O; Seidel CAM
    J Phys Chem B; 2017 Sep; 121(35):8211-8241. PubMed ID: 28709377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Flexibility of Glycine-Serine Linkers To Allow Rational Design of Multidomain Proteins.
    van Rosmalen M; Krom M; Merkx M
    Biochemistry; 2017 Dec; 56(50):6565-6574. PubMed ID: 29168376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding and applications of Ser/Gly linkers in protein engineering.
    Ceballos-Alcantarilla E; Merkx M
    Methods Enzymol; 2021; 647():1-22. PubMed ID: 33482985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and construction of chimeric linker library with controllable flexibilities for precision protein engineering.
    Huang Z; Zhang C; Xing XH
    Methods Enzymol; 2021; 647():23-49. PubMed ID: 33482990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a linker library with widely controllable flexibility for fusion protein design.
    Li G; Huang Z; Zhang C; Dong BJ; Guo RH; Yue HW; Yan LT; Xing XH
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):215-25. PubMed ID: 26394862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers.
    Evers TH; van Dongen EM; Faesen AC; Meijer EW; Merkx M
    Biochemistry; 2006 Nov; 45(44):13183-92. PubMed ID: 17073440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of linker flexibility and length on the functionality of a cytotoxic engineered antibody fragment.
    Klement M; Liu C; Loo BL; Choo AB; Ow DS; Lee DY
    J Biotechnol; 2015 Apr; 199():90-7. PubMed ID: 25697559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.
    Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA
    J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-motion dynamics are determined by surface-tethered selectin mechanokinetics and bond formation.
    Schmidt BJ; Papin JA; Lawrence MB
    PLoS Comput Biol; 2009 Dec; 5(12):e1000612. PubMed ID: 20019797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiscale model for simulating binding kinetics of proteins with flexible linkers.
    Chen J; Xie ZR; Wu Y
    Proteins; 2014 Oct; 82(10):2512-22. PubMed ID: 24888574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Bond Association Kinetics Determined by Tethered Particle Motion: Concept and Simulations.
    Merkus KE; Prins MWJ; Storm C
    Biophys J; 2016 Oct; 111(8):1612-1620. PubMed ID: 27760349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors.
    Gohlke H; Klebe G
    Angew Chem Int Ed Engl; 2002 Aug; 41(15):2644-76. PubMed ID: 12203463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic protein switches: Combinatorial linker engineering with iFLinkC.
    Gräwe A; Ranglack J; Weyrich A; Stein V
    Methods Enzymol; 2021; 647():231-255. PubMed ID: 33482991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FPMOD: a modeling tool for sampling the conformational space of fusion proteins.
    Chiang J; Li I; Pham E; Truong K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4111-4. PubMed ID: 17945826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the function of domain linkers in regulating the dynamics of multi-domain fusion proteins by microsecond molecular dynamics simulations and artificial intelligence.
    Wang B; Su Z; Wu Y
    Proteins; 2021 Jul; 89(7):884-895. PubMed ID: 33620752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding.
    Kim YC; Hummer G
    J Mol Biol; 2008 Feb; 375(5):1416-33. PubMed ID: 18083189
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.