These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 23822554)

  • 21. Ab inito study on triplet excitation energy transfer in photosynthetic light-harvesting complexes.
    You ZQ; Hsu CP
    J Phys Chem A; 2011 Apr; 115(16):4092-100. PubMed ID: 21410281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics.
    Zimanyi EN; Silbey RJ
    J Chem Phys; 2010 Oct; 133(14):144107. PubMed ID: 20949987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization.
    Jang S; Rivera E; Montemayor D
    J Phys Chem Lett; 2015 Mar; 6(6):928-34. PubMed ID: 26262847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.
    Fidler AF; Harel E; Long PD; Engel GS
    J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From coherent to vibronic light harvesting in photosynthesis.
    Jumper CC; Rafiq S; Wang S; Scholes GD
    Curr Opin Chem Biol; 2018 Dec; 47():39-46. PubMed ID: 30077962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semiclassical Modified Redfield and Generalized Förster Theories of Exciton Relaxation/Transfer in Light-Harvesting Complexes: The Quest for the Principle of Detailed Balance.
    Renger T
    J Phys Chem B; 2021 Jun; 125(24):6406-6416. PubMed ID: 34126008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering coherence among excited states in synthetic heterodimer systems.
    Hayes D; Griffin GB; Engel GS
    Science; 2013 Jun; 340(6139):1431-4. PubMed ID: 23599263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classical master equation for excitonic transport under the influence of an environment.
    Eisfeld A; Briggs JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046118. PubMed ID: 22680549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting.
    Baghbanzadeh S; Kassal I
    Phys Chem Chem Phys; 2016 Mar; 18(10):7459-67. PubMed ID: 26899714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
    Levi F; Mostarda S; Rao F; Mintert F
    Rep Prog Phys; 2015 Jul; 78(8):082001. PubMed ID: 26194028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multipartite quantum entanglement evolution in photosynthetic complexes.
    Zhu J; Kais S; Aspuru-Guzik A; Rodriques S; Brock B; Love PJ
    J Chem Phys; 2012 Aug; 137(7):074112. PubMed ID: 22920108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical description of quantum effects in multi-chromophoric aggregates.
    Zimanyi EN; Silbey RJ
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3620-37. PubMed ID: 22753817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A stochastic reorganizational bath model for electronic energy transfer.
    Fujita T; Huh J; Aspuru-Guzik A
    J Chem Phys; 2014 Jun; 140(24):244103. PubMed ID: 24985614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limits and potentials of quantum chemical methods in modelling photosynthetic antennae.
    Jurinovich S; Viani L; Curutchet C; Mennucci B
    Phys Chem Chem Phys; 2015 Dec; 17(46):30783-92. PubMed ID: 25865958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of excitation and trapping conditions in photosynthetic environment-assisted energy transport.
    León-Montiel Rde J; Kassal I; Torres JP
    J Phys Chem B; 2014 Sep; 118(36):10588-94. PubMed ID: 25141219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interplay of disorder and delocalization in photosynthetic light harvesting.
    Pavel M; Rienk VG
    Curr Opin Chem Biol; 2018 Dec; 47():1-6. PubMed ID: 29957484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complex quantum network model of energy transfer in photosynthetic complexes.
    Ai BQ; Zhu SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061917. PubMed ID: 23367985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the accuracy of the LSC-IVR approach for excitation energy transfer in molecular aggregates.
    Teh HH; Cheng YC
    J Chem Phys; 2017 Apr; 146(14):144105. PubMed ID: 28411592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation.
    Abramavicius V; Abramavicius D
    J Chem Phys; 2014 Feb; 140(6):065103. PubMed ID: 24527939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.