These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23823220)

  • 1. Molecular adsorption steers bacterial swimming at the air/water interface.
    Morse M; Huang A; Li G; Maxey MR; Tang JX
    Biophys J; 2013 Jul; 105(1):21-8. PubMed ID: 23823220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of
    Fiebig A
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31010900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells.
    Li G; Tang JX
    Biophys J; 2006 Oct; 91(7):2726-34. PubMed ID: 16844761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered motility of Caulobacter Crescentus in viscous and viscoelastic media.
    Gao Y; Neubauer M; Yang A; Johnson N; Morse M; Li G; Tang JX
    BMC Microbiol; 2014 Dec; 14():322. PubMed ID: 25539737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.
    Cai B; Ikeda S
    J Dairy Sci; 2016 Aug; 99(8):6026-6035. PubMed ID: 27265176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplified effect of Brownian motion in bacterial near-surface swimming.
    Li G; Tam LK; Tang JX
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18355-9. PubMed ID: 19015518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry.
    Svitova TF; Wetherbee MJ; Radke CJ
    J Colloid Interface Sci; 2003 May; 261(1):170-9. PubMed ID: 12725837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helical motion of the cell body enhances Caulobacter crescentus motility.
    Liu B; Gulino M; Morse M; Tang JX; Powers TR; Breuer KS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11252-6. PubMed ID: 25053810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D dynamics of bacteria wall entrapment at a water-air interface.
    Bianchi S; Saglimbeni F; Frangipane G; Dell'Arciprete D; Di Leonardo R
    Soft Matter; 2019 Apr; 15(16):3397-3406. PubMed ID: 30933209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Aerotactic Response of Caulobacter crescentus.
    Morse M; Colin R; Wilson LG; Tang JX
    Biophys J; 2016 May; 110(9):2076-84. PubMed ID: 27166815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface.
    Miller R; Fainerman VB; Makievski AV; Krägel J; Grigoriev DO; Kazakov VN; Sinyachenko OV
    Adv Colloid Interface Sci; 2000 May; 86(1-2):39-82. PubMed ID: 10798350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New view of the adsorption of surfactants at water/alkane interfaces - Competitive and cooperative effects of surfactant and alkane molecules.
    Fainerman VB; Aksenenko EV; Kovalchuk VI; Mucic N; Javadi A; Liggieri L; Ravera F; Loglio G; Makievski AV; Schneck E; Miller R
    Adv Colloid Interface Sci; 2020 May; 279():102143. PubMed ID: 32224338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-silicone oil interactions: comparative effect of nonionic surfactants on the interfacial behavior of a fusion protein.
    Dixit N; Maloney KM; Kalonia DS
    Pharm Res; 2013 Jul; 30(7):1848-59. PubMed ID: 23568525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive Surface Activity of Monoclonal Antibodies and Nonionic Surfactants at the Air-Water Interface Determined by Interfacial Rheology and Neutron Reflectometry.
    Tein YS; Zhang Z; Wagner NJ
    Langmuir; 2020 Jul; 36(27):7814-7823. PubMed ID: 32551695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Films of bacteria at interfaces.
    Vaccari L; Molaei M; Niepa THR; Lee D; Leheny RL; Stebe KJ
    Adv Colloid Interface Sci; 2017 Sep; 247():561-572. PubMed ID: 28778342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.
    Liyana-Arachchi TP; Valsaraj KT; Hung FR
    J Phys Chem A; 2012 Mar; 116(10):2519-28. PubMed ID: 22353023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-propelling and rolling of a sessile-motile aggregate of the bacterium Caulobacter crescentus.
    Zeng Y; Liu B
    Commun Biol; 2020 Oct; 3(1):587. PubMed ID: 33067555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.
    Maestro A; Kotsmar C; Javadi A; Miller R; Ortega F; Rubio RG
    J Phys Chem B; 2012 Apr; 116(16):4898-907. PubMed ID: 22475110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.