These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23823225)

  • 1. Automated maximum likelihood separation of signal from baseline in noisy quantal data.
    Bruno WJ; Ullah G; Mak DO; Pearson JE
    Biophys J; 2013 Jul; 105(1):68-79. PubMed ID: 23823225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TraceSpecks: A Software for Automated Idealization of Noisy Patch-Clamp and Imaging Data.
    Shah SI; Demuro A; Mak DD; Parker I; Pearson JE; Ullah G
    Biophys J; 2018 Jul; 115(1):9-21. PubMed ID: 29972815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences.
    Chung SH; Krishnamurthy V; Moore JB
    Philos Trans R Soc Lond B Biol Sci; 1991 Dec; 334(1271):357-84. PubMed ID: 1723807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Adaptive restoration of single ion channel signal under filtering and colored background noise].
    Han X; Han X; Liu X; Lin J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):444-8. PubMed ID: 12557518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling.
    Qin F
    Biophys J; 2004 Mar; 86(3):1488-501. PubMed ID: 14990476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MCMC estimation of Markov models for ion channels.
    Siekmann I; Wagner LE; Yule D; Fox C; Bryant D; Crampin EJ; Sneyd J
    Biophys J; 2011 Apr; 100(8):1919-29. PubMed ID: 21504728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automated method for generating analogic signals that embody the Markov kinetics of model ionic channels.
    Luchian T
    J Neurosci Methods; 2005 Aug; 147(1):8-14. PubMed ID: 16054511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On identification of Na(+) channel gating schemes using moving-average filtered hidden Markov models.
    Michalek S; Lerche H; Wagner M; Mitrović N; Schiebe M; Lehmann-Horn F; Timmer J
    Eur Biophys J; 1999; 28(7):605-9. PubMed ID: 10541799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact stochastic simulation of a calcium microdomain reveals the impact of Ca²⁺ fluctuations on IP₃R gating.
    Wieder N; Fink R; von Wegner F
    Biophys J; 2015 Feb; 108(3):557-67. PubMed ID: 25650923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ion single channel signal restoration and parameters' estimation based on the hidden Markov models].
    Han XD; Liu XM; Pan H; Tao M; Lin JR
    Zhongguo Yi Liao Qi Xie Za Zhi; 2001 Nov; 25(6):311-5, 346. PubMed ID: 12583259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying hidden Markov models to the analysis of single ion channel activity.
    Venkataramanan L; Sigworth FJ
    Biophys J; 2002 Apr; 82(4):1930-42. PubMed ID: 11916851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of multichannel patch clamp recordings by hidden Markov models.
    Klein S; Timmer J; Honerkamp J
    Biometrics; 1997 Sep; 53(3):870-84. PubMed ID: 9333349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid kinetic analysis of multichannel records by a simultaneous fit to all dwell-time histograms.
    Csanády L
    Biophys J; 2000 Feb; 78(2):785-99. PubMed ID: 10653791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inositol trisphosphate receptor and ion channel models based on single-channel data.
    Gin E; Wagner LE; Yule DI; Sneyd J
    Chaos; 2009 Sep; 19(3):037104. PubMed ID: 19792029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic model for type I and II IP3R accounting for mode changes.
    Siekmann I; Wagner LE; Yule D; Crampin EJ; Sneyd J
    Biophys J; 2012 Aug; 103(4):658-68. PubMed ID: 22947927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling local and global intracellular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate receptors.
    Williams GS; Molinelli EJ; Smith GD
    J Theor Biol; 2008 Jul; 253(1):170-88. PubMed ID: 18405920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of stochastic differential equation approximation of ion channel gating models.
    Bruce IC
    Ann Biomed Eng; 2009 Apr; 37(4):824-38. PubMed ID: 19152030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic model of the inositol trisphosphate receptor based on single-channel data.
    Gin E; Falcke M; Wagner LE; Yule DI; Sneyd J
    Biophys J; 2009 May; 96(10):4053-62. PubMed ID: 19450477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoscopic behavior from microscopic Markov dynamics and its application to calcium release channels.
    Christian N; Skupin A; Morante S; Jansen K; Rossi G; Ebenhöh O
    J Theor Biol; 2014 Feb; 343():102-12. PubMed ID: 24270093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A data-driven model of a modal gated ion channel: the inositol 1,4,5-trisphosphate receptor in insect Sf9 cells.
    Ullah G; Mak DO; Pearson JE
    J Gen Physiol; 2012 Aug; 140(2):159-73. PubMed ID: 22851676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.