These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 23823238)
1. A ribokinase family conserved monovalent cation binding site enhances the MgATP-induced inhibition in E. coli phosphofructokinase-2. Baez M; Cabrera R; Pereira HM; Blanco A; Villalobos P; Ramírez-Sarmiento CA; Caniuguir A; Guixé V; Garratt RC; Babul J Biophys J; 2013 Jul; 105(1):185-93. PubMed ID: 23823238 [TBL] [Abstract][Full Text] [Related]
2. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member. Parducci RE; Cabrera R; Baez M; Guixé V Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375 [TBL] [Abstract][Full Text] [Related]
3. Uncoupling the MgATP-induced inhibition and aggregation of Escherichia coli phosphofructokinase-2 by C-terminal mutations. Baez M; Merino F; Astorga G; Babul J FEBS Lett; 2008 Jun; 582(13):1907-12. PubMed ID: 18501195 [TBL] [Abstract][Full Text] [Related]
5. Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. Cabrera R; Ambrosio AL; Garratt RC; Guixé V; Babul J J Mol Biol; 2008 Nov; 383(3):588-602. PubMed ID: 18762190 [TBL] [Abstract][Full Text] [Related]
6. The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition. Cabrera R; Baez M; Pereira HM; Caniuguir A; Garratt RC; Babul J J Biol Chem; 2011 Feb; 286(7):5774-83. PubMed ID: 21147773 [TBL] [Abstract][Full Text] [Related]
7. Crystallization and preliminary crystallographic analysis of the tetrameric form of phosphofructokinase-2 from Escherichia coli, a member of the ribokinase family. Cabrera R; Caniuguir A; Ambrosio AL; Guixé V; Garratt RC; Babul J Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Sep; 62(Pt 9):935-7. PubMed ID: 16946484 [TBL] [Abstract][Full Text] [Related]
8. Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12 (lambda). Activation by monovalent cations and an analysis of the effect of the adenosine triphosphate-magnesium ion complex on this activation process. Ogilvie JW; Vickers LP; Clark RB; Jones MM J Biol Chem; 1975 Feb; 250(4):1242-50. PubMed ID: 163250 [TBL] [Abstract][Full Text] [Related]
9. MgATP-dependent activation by phosphoenolpyruvate of the E187A mutant of Escherichia coli phosphofructokinase. Pham AS; Reinhart GD Biochemistry; 2001 Apr; 40(13):4150-8. PubMed ID: 11300796 [TBL] [Abstract][Full Text] [Related]
10. MgATP and fructose 6-phosphate interactions with phosphofructokinase from Escherichia coli. Johnson JL; Reinhart GD Biochemistry; 1992 Nov; 31(46):11510-8. PubMed ID: 1445885 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of Sa239 reveals the structural basis for the activation of ribokinase by monovalent cations. Li J; Wang C; Wu Y; Wu M; Wang L; Wang Y; Zang J J Struct Biol; 2012 Feb; 177(2):578-82. PubMed ID: 22198595 [TBL] [Abstract][Full Text] [Related]
12. Influence of ligands on the aggregation of the normal and mutant forms of phosphofructokinase 2 of Escherichia coli. Guixé V; Babul J Arch Biochem Biophys; 1988 Aug; 264(2):519-24. PubMed ID: 2969698 [TBL] [Abstract][Full Text] [Related]
13. Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli. Caniuguir A; Cabrera R; Báez M; Vásquez CC; Babul J; Guixé V FEBS Lett; 2005 Apr; 579(11):2313-8. PubMed ID: 15848164 [TBL] [Abstract][Full Text] [Related]
14. Effect of ATP on phosphofructokinase-2 from Escherichia coli. A mutant enzyme altered in the allosteric site for MgATP. Guixé V; Babul J J Biol Chem; 1985 Sep; 260(20):11001-5. PubMed ID: 3161887 [TBL] [Abstract][Full Text] [Related]
15. Regulatory network of the allosteric ATP inhibition of E. coli phosphofructokinase-2 studied by hybrid dimers. Villalobos P; Soto F; Baez M; Babul J Biochimie; 2016; 128-129():209-16. PubMed ID: 27591700 [TBL] [Abstract][Full Text] [Related]
16. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties. Guixé V Arch Biochem Biophys; 2000 Apr; 376(2):313-9. PubMed ID: 10775417 [TBL] [Abstract][Full Text] [Related]
17. Ribokinase family evolution and the role of conserved residues at the active site of the PfkB subfamily representative, Pfk-2 from Escherichia coli. Cabrera R; Babul J; Guixé V Arch Biochem Biophys; 2010 Oct; 502(1):23-30. PubMed ID: 20599671 [TBL] [Abstract][Full Text] [Related]
18. Role of monovalent and divalent metal cations in human ribokinase catalysis and regulation. Quiroga-Roger D; Babul J; Guixé V Biometals; 2015 Apr; 28(2):401-13. PubMed ID: 25749547 [TBL] [Abstract][Full Text] [Related]
19. Influence of MgADP on phosphofructokinase from Escherichia coli. Elucidation of coupling interactions with both substrates. Johnson JL; Reinhart GD Biochemistry; 1994 Mar; 33(9):2635-43. PubMed ID: 8117726 [TBL] [Abstract][Full Text] [Related]
20. Persistent binding of MgADP to the E187A mutant of Escherichia coli phosphofructokinase in the absence of allosteric effects. Pham AS; Janiak-Spens F; Reinhart GD Biochemistry; 2001 Apr; 40(13):4140-9. PubMed ID: 11300795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]