BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23823241)

  • 1. Mode-specific reorganization energies and ultrafast solvation dynamics of Tryptophan from Raman line-shape analysis.
    Milán-Garcés EA; Kaptan S; Puranik M
    Biophys J; 2013 Jul; 105(1):211-21. PubMed ID: 23823241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.
    Mondal S; Puranik M
    Phys Chem Chem Phys; 2016 May; 18(20):13874-87. PubMed ID: 27146198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast structural dynamics of photoexcited adenine.
    Mondal S; Puranik M
    Phys Chem Chem Phys; 2017 Aug; 19(30):20224-20240. PubMed ID: 28726897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Nuclear Dynamics of Photoexcited Guanosine-5'-Monophosphate in Three Singlet States.
    Mondal S; Puranik M
    J Phys Chem B; 2017 Jul; 121(29):7095-7107. PubMed ID: 28653848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of time-dependent red shifts in fluorescence emission from tryptophan residues in proteins.
    Toptygin D
    Methods Mol Biol; 2014; 1076():215-56. PubMed ID: 24108628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins.
    Schlamadinger DE; Gable JE; Kim JE
    J Phys Chem B; 2009 Nov; 113(44):14769-78. PubMed ID: 19817473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of tryptophan fluorescence lifetimes part 1. Fluorescence lifetimes origin of tryptophan free in solution.
    Albani JR
    J Fluoresc; 2014 Jan; 24(1):93-104. PubMed ID: 23912963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman scattering and red fluorescence in the photochemical transformation of dry tryptophan particles.
    Lai CW; Schwab M; Hill SC; Santarpia J; Pan YL
    Opt Express; 2016 May; 24(11):11654-67. PubMed ID: 27410091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Existence of a new emitting singlet state of proflavine: femtosecond dynamics of the excited state processes and quantum chemical studies in different solvents.
    Kumar KS; Selvaraju C; Malar EJ; Natarajan P
    J Phys Chem A; 2012 Jan; 116(1):37-45. PubMed ID: 22145576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan rotamers as evidenced by X-ray, fluorescence lifetimes, and molecular dynamics modeling.
    Moors SL; Hellings M; De Maeyer M; Engelborghs Y; Ceulemans A
    Biophys J; 2006 Aug; 91(3):816-23. PubMed ID: 16698786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The In Situ Tryptophan Analogue Probes the Conformational Dynamics in Asparaginase Isozymes.
    Chao WC; Shen JY; Yang CH; Lan YK; Yuan JH; Lin LJ; Yang HC; Lu JF; Wang JS; Wee K; Chen YH; Chou PT
    Biophys J; 2016 Apr; 110(8):1732-1743. PubMed ID: 27119634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond studies of tryptophan fluorescence dynamics in proteins: local solvation and electronic quenching.
    Zhang L; Kao YT; Qiu W; Wang L; Zhong D
    J Phys Chem B; 2006 Sep; 110(37):18097-103. PubMed ID: 16970418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence heterogeneity of tryptophans in Na,K-ATPase: evidences for temperature-dependent energy transfer.
    Demchenko AP; Gallay J; Vincent M; Apell HJ
    Biophys Chem; 1998 Jun; 72(3):265-83. PubMed ID: 9691270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.
    Jia M; Yi H; Chang M; Cao X; Li L; Zhou Z; Pan H; Chen Y; Zhang S; Xu J
    J Photochem Photobiol B; 2015 Aug; 149():243-8. PubMed ID: 26111991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Förster resonance energy transfer between tyrosine and tryptophan: potential contributions to protein-water dynamics measurements.
    Li H; Jiang G; Jia M; Cao S; Zhang S; Chen J; Sun H; Xu J; Knutson JR
    Phys Chem Chem Phys; 2022 Aug; 24(30):18055-18066. PubMed ID: 35861343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman analysis of nonlinear solvent dynamics: betaine-30 in ethanol.
    Zhao X; Burt JA; McHale JL
    J Chem Phys; 2004 Dec; 121(22):11195-201. PubMed ID: 15634074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photophysical Behavior and Fluorescence Quenching of l-Tryptophan in Choline Chloride-Based Deep Eutectic Solvents.
    Kadyan A; Juneja S; Pandey S
    J Phys Chem B; 2019 Sep; 123(35):7578-7587. PubMed ID: 31402653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of tryptophan with ionic liquids studied with molecular dynamics simulations.
    Seduraman A; Wu P; Klähn M
    J Phys Chem B; 2012 Jan; 116(1):296-304. PubMed ID: 22136607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease.
    Demchenko AP; Gryczynski I; Gryczynski Z; Wiczk W; Malak H; Fishman M
    Biophys Chem; 1993 Nov; 48(1):39-48. PubMed ID: 8257766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay.
    Xu J; Knutson JR
    J Phys Chem B; 2009 Sep; 113(35):12084-9. PubMed ID: 19708715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.