These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23823241)

  • 21. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water.
    Paschek D; Nymeyer H; García AE
    J Struct Biol; 2007 Mar; 157(3):524-33. PubMed ID: 17293125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence study of the three tryptophan residues of the pore-forming domain of colicin A using multifrequency phase fluorometry.
    Vos R; Engelborghs Y; Izard J; Baty D
    Biochemistry; 1995 Feb; 34(5):1734-43. PubMed ID: 7849033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environment-Driven Coherent Population Transfer Governs the Ultrafast Photophysics of Tryptophan.
    Jaiswal VK; Kabaciński P; Nogueira de Faria BE; Gentile M; de Paula AM; Borrego-Varillas R; Nenov A; Conti I; Cerullo G; Garavelli M
    J Am Chem Soc; 2022 Jul; 144(28):12884-12892. PubMed ID: 35796759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption.
    Schenkl S; van Mourik F; Friedman N; Sheves M; Schlesinger R; Haacke S; Chergui M
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4101-6. PubMed ID: 16537491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tryptophan side chain conformers monitored by NMR and time-resolved fluorescence spectroscopies.
    Julien O; Wang G; Jonckheer A; Engelborghs Y; Sykes BD
    Proteins; 2012 Jan; 80(1):239-45. PubMed ID: 22072563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting Nanosecond Dynamics in Membrane Proteins with Dipolar Relaxation upon Tryptophan Photoexcitation.
    Frotscher E; Krainer G; Schlierf M; Keller S
    J Phys Chem Lett; 2018 May; 9(9):2241-2245. PubMed ID: 29652505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microsolvation effects on the excited-state dynamics of protonated tryptophan.
    Mercier SR; Boyarkin OV; Kamariotis A; Guglielmi M; Tavernelli I; Cascella M; Rothlisberger U; Rizzo TR
    J Am Chem Soc; 2006 Dec; 128(51):16938-43. PubMed ID: 17177445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A spectroscopic survey of substituted indoles reveals consequences of a stabilized 1Lb transition.
    Meng X; Harricharran T; Juszczak LJ
    Photochem Photobiol; 2013; 89(1):40-50. PubMed ID: 22882557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tryptophan-lipid interactions in membrane protein folding probed by ultraviolet resonance Raman and fluorescence spectroscopy.
    Sanchez KM; Kang G; Wu B; Kim JE
    Biophys J; 2011 May; 100(9):2121-30. PubMed ID: 21539779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solvation dynamics of tryptophan in water-dimethyl sulfoxide binary mixture: in search of molecular origin of composition dependent multiple anomalies.
    Roy S; Bagchi B
    J Chem Phys; 2013 Jul; 139(3):034308. PubMed ID: 23883028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Planarity and out-of-plane vibrational modes of tryptophan and tyrosine in biomolecular modeling.
    Joodaki F; Martin LM; Greenfield ML
    Phys Chem Chem Phys; 2019 Nov; 21(43):23943-23965. PubMed ID: 31596287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of response function construction and probing heterogeneous protein hydration by intrinsic tryptophan.
    Qin Y; Chang CW; Wang L; Zhong D
    J Phys Chem B; 2012 Nov; 116(45):13320-30. PubMed ID: 23075091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast dynamics of nonequilibrium resonance energy transfer and probing globular protein flexibility of myoglobin.
    Stevens JA; Link JJ; Zang C; Wang L; Zhong D
    J Phys Chem A; 2012 Mar; 116(11):2610-9. PubMed ID: 21863851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three types of induced tryptophan optical activity compared in model dipeptides: theory and experiment.
    Hudecová J; Horníček J; Buděšínský M; Šebestík J; Šafařík M; Zhang G; Keiderling TA; Bouř P
    Chemphyschem; 2012 Aug; 13(11):2748-60. PubMed ID: 22706803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.
    Nguyen CN; Young TK; Gilson MK
    J Chem Phys; 2012 Jul; 137(4):044101. PubMed ID: 22852591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations.
    Lopez AJ; Martínez L
    J Comput Chem; 2018 Jul; 39(19):1249-1258. PubMed ID: 29484676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dipole-dipole interactions between tryptophan side chains and hydration water molecules dominate the observed dynamic stokes shift of lysozyme.
    Fukuda A; Oroguchi T; Nakasako M
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129406. PubMed ID: 31377191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence lifetimes of the tryptophan residues in ornithine transcarbamoylase.
    Shen WH
    Biochemistry; 1993 Dec; 32(50):13925-32. PubMed ID: 8268168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent.
    Burt JA; Zhao X; McHale JL
    J Chem Phys; 2004 Mar; 120(9):4344-54. PubMed ID: 15268604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.