BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23824007)

  • 1. A highly selective route to linear alpha olefins from biomass-derived lactones and unsaturated acids.
    Wang D; Hakim SH; Alonso DM; Dumesic JA
    Chem Commun (Camb); 2013 Aug; 49(63):7040-2. PubMed ID: 23824007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium-catalyzed alkylative lactonization and carbocyclization.
    Trost BM; McClory A
    Org Lett; 2006 Aug; 8(17):3627-9. PubMed ID: 16898777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water.
    Bond JQ; Alonso DM; West RM; Dumesic JA
    Langmuir; 2010 Nov; 26(21):16291-8. PubMed ID: 20513157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs.
    Baylon RA; Sun J; Martin KJ; Venkitasubramanian P; Wang Y
    Chem Commun (Camb); 2016 Apr; 52(28):4975-8. PubMed ID: 26898532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter- and intramolecular addition reactions of electron-deficient alkenes with alkyl radicals, generated by SET-photochemical decarboxylation of carboxylic acids, serve as a mild and efficient method for the preparation of gamma-amino acids and macrocyclic lactones.
    Yoshimi Y; Masuda M; Mizunashi T; Nishikawa K; Maeda K; Koshida N; Itou T; Morita T; Hatanaka M
    Org Lett; 2009 Oct; 11(20):4652-5. PubMed ID: 19751053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical photocyclization route for macrocyclic lactone ring expansion and conversion to macrocyclic lactams and ketones.
    Nishikawa K; Yoshimi Y; Maeda K; Morita T; Takahashi I; Itou T; Inagaki S; Hatanaka M
    J Org Chem; 2013 Jan; 78(2):582-9. PubMed ID: 23253018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel lactonization of ethenetricarboxylate derivatives: intermolecular trapping of alkenes.
    Yamazaki S; Ohmitsu K; Ohi K; Otsubo T; Moriyama K
    Org Lett; 2005 Mar; 7(5):759-62. PubMed ID: 15727434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose conversion with tungstated-alumina-based catalysts: influence of the presence of platinum and mechanistic studies.
    Chambon F; Rataboul F; Pinel C; Cabiac A; Guillon E; Essayem N
    ChemSusChem; 2013 Mar; 6(3):500-7. PubMed ID: 23427047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.
    Zhang H; Xiao R; Jin B; Xiao G; Chen R
    Bioresour Technol; 2013 Jul; 140():256-62. PubMed ID: 23707913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural.
    Bui L; Luo H; Gunther WR; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2013 Jul; 52(31):8022-5. PubMed ID: 23757377
    [No Abstract]   [Full Text] [Related]  

  • 11. Oxidative γ-addition of enals to trifluoromethyl ketones: enantioselectivity control via Lewis acid/N-heterocyclic carbene cooperative catalysis.
    Mo J; Chen X; Chi YR
    J Am Chem Soc; 2012 May; 134(21):8810-3. PubMed ID: 22571795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable diastereoselectivity in enantioselective [4+2] cycloadditions with simple olefins by asymmetric binary acid catalysis.
    Lv J; Zhang L; Luo S; Cheng JP
    Angew Chem Int Ed Engl; 2013 Sep; 52(37):9786-90. PubMed ID: 23897700
    [No Abstract]   [Full Text] [Related]  

  • 13. Dual catalysis: new approaches for the polymerization of lactones and polar olefins.
    Piedra-Arroni E; Amgoune A; Bourissou D
    Dalton Trans; 2013 Jul; 42(25):9024-9. PubMed ID: 23471113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidity of amorphous silica-alumina: from coordination promotion of Lewis sites to proton transfer.
    Chizallet C; Raybaud P
    Chemphyschem; 2010 Jan; 11(1):105-8. PubMed ID: 19882620
    [No Abstract]   [Full Text] [Related]  

  • 15. Bifunctional catalyst promotes highly enantioselective bromolactonizations to generate stereogenic C-Br bonds.
    Paull DH; Fang C; Donald JR; Pansick AD; Martin SF
    J Am Chem Soc; 2012 Jul; 134(27):11128-31. PubMed ID: 22726214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective iodolactonization of disubstituted olefinic acids using a bifunctional catalyst.
    Fang C; Paull DH; Hethcox JC; Shugrue CR; Martin SF
    Org Lett; 2012 Dec; 14(24):6290-3. PubMed ID: 23199100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olefins from biomass feedstocks: catalytic ester decarbonylation and tandem Heck-type coupling.
    John A; Hogan LT; Hillmyer MA; Tolman WB
    Chem Commun (Camb); 2015 Feb; 51(13):2731-3. PubMed ID: 25579879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-catalyzed decarbonylation reaction of aliphatic carboxylic acids leading to α-olefins.
    Maetani S; Fukuyama T; Suzuki N; Ishihara D; Ryu I
    Chem Commun (Camb); 2012 Mar; 48(19):2552-4. PubMed ID: 22286391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascade Synthesis of Five-Membered Lactones using Biomass-Derived Sugars as Carbon Nucleophiles.
    Yamaguchi S; Matsuo T; Motokura K; Miyaji A; Baba T
    Chem Asian J; 2016 Jun; 11(11):1731-7. PubMed ID: 27061111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4-(Dimethylamino)pyridine-catalysed iodolactonisation of γ,δ-unsaturated carboxylic acids.
    Meng C; Liu Z; Liu Y; Wang Q
    Org Biomol Chem; 2015 Jun; 13(24):6766-72. PubMed ID: 26009007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.