These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
678 related articles for article (PubMed ID: 23824240)
1. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply. Gruffman L; Palmroth S; Näsholm T Tree Physiol; 2013 Jun; 33(6):590-600. PubMed ID: 23824240 [TBL] [Abstract][Full Text] [Related]
2. Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. Gruffman L; Jämtgård S; Näsholm T Tree Physiol; 2014 Feb; 34(2):205-13. PubMed ID: 24488801 [TBL] [Abstract][Full Text] [Related]
3. Rhizospheric NO affects N uptake and metabolism in Scots pine (Pinus sylvestris L.) seedlings depending on soil N availability and N source. Simon J; Dong F; Buegger F; Rennenberg H Plant Cell Environ; 2013 May; 36(5):1019-26. PubMed ID: 23146102 [TBL] [Abstract][Full Text] [Related]
4. Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings. Schulz H; Schäfer T; Storbeck V; Härtling S; Rudloff R; Köck M; Buscot F Tree Physiol; 2012 Jan; 32(1):36-48. PubMed ID: 22184278 [TBL] [Abstract][Full Text] [Related]
5. Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. Persson J; Gardeström P; Näsholm T J Exp Bot; 2006; 57(11):2651-9. PubMed ID: 16820399 [TBL] [Abstract][Full Text] [Related]
6. Regulation of organic and inorganic nitrogen uptake in Scots pine (Pinus sylvestris) seedlings. Ohlund J; Näsholm T Tree Physiol; 2004 Dec; 24(12):1397-402. PubMed ID: 15465702 [TBL] [Abstract][Full Text] [Related]
7. Growth of conifer seedlings on organic and inorganic nitrogen sources. Ohlund J; Näsholm T Tree Physiol; 2001 Dec; 21(18):1319-26. PubMed ID: 11731342 [TBL] [Abstract][Full Text] [Related]
8. A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources. Hawkins BJ; Boukcim H; Plassard C Plant Cell Environ; 2008 Mar; 31(3):278-87. PubMed ID: 18034773 [TBL] [Abstract][Full Text] [Related]
9. Competition for nitrogen between European beech and sycamore maple shifts in favour of beech with decreasing light availability. Simon J; Li X; Rennenberg H Tree Physiol; 2014 Jan; 34(1):49-60. PubMed ID: 24391164 [TBL] [Abstract][Full Text] [Related]
10. Organic nitrogen enhances nitrogen nutrition and early growth of Pinus sylvestris seedlings. Lim H; Jämtgård S; Oren R; Gruffman L; Kunz S; Näsholm T Tree Physiol; 2022 Mar; 42(3):513-522. PubMed ID: 34580709 [TBL] [Abstract][Full Text] [Related]
11. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil. Zhang J; George E Tree Physiol; 2009 Feb; 29(2):199-206. PubMed ID: 19203945 [TBL] [Abstract][Full Text] [Related]
12. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Domisch T; Finér L; Lehto T Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047 [TBL] [Abstract][Full Text] [Related]
13. Uptake of inorganic and amino acid nitrogen from soil by Eucalyptus regnans and Eucalyptus pauciflora seedlings. Warren CR Tree Physiol; 2009 Mar; 29(3):401-9. PubMed ID: 19203963 [TBL] [Abstract][Full Text] [Related]
14. Effects of prolonged drought stress on Scots pine seedling carbon allocation. Aaltonen H; Lindén A; Heinonsalo J; Biasi C; Pumpanen J Tree Physiol; 2017 Apr; 37(4):418-427. PubMed ID: 27974653 [TBL] [Abstract][Full Text] [Related]
15. Competition for nitrogen sources between European beech (Fagus sylvatica) and sycamore maple (Acer pseudoplatanus) seedlings. Simon J; Waldhecker P; Brüggemann N; Rennenberg H Plant Biol (Stuttg); 2010 May; 12(3):453-8. PubMed ID: 20522181 [TBL] [Abstract][Full Text] [Related]
16. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees. Henriksson N; Tarvainen L; Lim H; Tor-Ngern P; Palmroth S; Oren R; Marshall J; Näsholm T Tree Physiol; 2015 Oct; 35(10):1075-85. PubMed ID: 26377876 [TBL] [Abstract][Full Text] [Related]
17. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. Pumpanen J; Heinonsalo J; Rasilo T; Villemot J; Ilvesniemi H Tree Physiol; 2012 Jun; 32(6):724-36. PubMed ID: 22345325 [TBL] [Abstract][Full Text] [Related]
18. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related]
19. The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica). Stoelken G; Simon J; Ehlting B; Rennenberg H Tree Physiol; 2010 Sep; 30(9):1118-28. PubMed ID: 20595637 [TBL] [Abstract][Full Text] [Related]
20. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]