These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23824506)

  • 1. Walknet, a bio-inspired controller for hexapod walking.
    Schilling M; Hoinville T; Schmitz J; Cruse H
    Biol Cybern; 2013 Aug; 107(4):397-419. PubMed ID: 23824506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walknet-a biologically inspired network to control six-legged walking.
    Cruse H; Kindermann T; Schumm M; Dean J; Schmitz J
    Neural Netw; 1998 Oct; 11(7-8):1435-1447. PubMed ID: 12662760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
    Dürr V; Schmitz J; Cruse H
    Arthropod Struct Dev; 2004 Jul; 33(3):237-50. PubMed ID: 18089037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexapod Walking: an expansion to Walknet dealing with leg amputations and force oscillations.
    Schilling M; Cruse H; Arena P
    Biol Cybern; 2007 Mar; 96(3):323-40. PubMed ID: 17106698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decentralized control of insect walking: A simple neural network explains a wide range of behavioral and neurophysiological results.
    Schilling M; Cruse H
    PLoS Comput Biol; 2020 Apr; 16(4):e1007804. PubMed ID: 32339162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
    von Twickel A; Büschges A; Pasemann F
    Biol Cybern; 2011 Feb; 104(1-2):95-119. PubMed ID: 21327828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biologically inspired controller for hexapod walking: simple solutions by exploiting physical properties.
    Schmitz J; Dean J; Kindermann T; Schumm M; Cruse H
    Biol Bull; 2001 Apr; 200(2):195-200. PubMed ID: 11341583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. neuroWalknet, a controller for hexapod walking allowing for context dependent behavior.
    Schilling M; Cruse H
    PLoS Comput Biol; 2023 Jan; 19(1):e1010136. PubMed ID: 36693085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.
    Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2014; 8():3. PubMed ID: 24523694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
    Grabowska M; Godlewska E; Schmidt J; Daun-Gruhn S
    J Exp Biol; 2012 Dec; 215(Pt 24):4255-66. PubMed ID: 22972892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sideways crab-walking is faster and more efficient than forward walking for a hexapod robot.
    Chen Y; Grezmak JE; Graf NM; Daltorio KA
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35439747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How and to what end may consciousness contribute to action? Attributing properties of consciousness to an embodied, minimally cognitive artificial neural network.
    Cruse H; Schilling M
    Front Psychol; 2013; 4():324. PubMed ID: 23785343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.
    Dasgupta S; Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():10. PubMed ID: 26441629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resource-efficient bio-inspired visual processing on the hexapod walking robot HECTOR.
    Meyer HG; Klimeck D; Paskarbeit J; Rückert U; Egelhaaf M; Porrmann M; Schneider A
    PLoS One; 2020; 15(4):e0230620. PubMed ID: 32236111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hexapod walker using a heterarchical architecture for action selection.
    Schilling M; Paskarbeit J; Hoinville T; Hüffmeier A; Schneider A; Schmitz J; Cruse H
    Front Comput Neurosci; 2013; 7():126. PubMed ID: 24062682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.
    Čížek P; Faigl J
    Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of complex movements using artificial neural networks.
    Cruse H; Dean J; Kindermann T; Schmitz J; Schumm M
    Z Naturforsch C J Biosci; 1998; 53(7-8):628-38. PubMed ID: 9755516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System.
    Arena E; Arena P; Strauss R; Patané L
    Front Neurorobot; 2017; 11():12. PubMed ID: 28337138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.