BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23824589)

  • 1. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.
    Mueller JL; Harmany ZT; Mito JK; Kennedy SA; Kim Y; Dodd L; Geradts J; Kirsch DG; Willett RM; Brown JQ; Ramanujam N
    PLoS One; 2013; 8(6):e66198. PubMed ID: 23824589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative microscopic approach to predict local recurrence based on in vivo intraoperative imaging of sarcoma tumor margins.
    Mueller JL; Fu HL; Mito JK; Whitley MJ; Chitalia R; Erkanli A; Dodd L; Cardona DM; Geradts J; Willett RM; Kirsch DG; Ramanujam N
    Int J Cancer; 2015 Nov; 137(10):2403-12. PubMed ID: 25994353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma.
    Fu HL; Mueller JL; Javid MP; Mito JK; Kirsch DG; Ramanujam N; Brown JQ
    PLoS One; 2013; 8(7):e68868. PubMed ID: 23894357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structured Illumination Microscopy and a Quantitative Image Analysis for the Detection of Positive Margins in a Pre-Clinical Genetically Engineered Mouse Model of Sarcoma.
    Fu HL; Mueller JL; Whitley MJ; Cardona DM; Willett RM; Kirsch DG; Brown JQ; Ramanujam N
    PLoS One; 2016; 11(1):e0147006. PubMed ID: 26799613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.
    Bagci U; Foster B; Miller-Jaster K; Luna B; Dey B; Bishai WR; Jonsson CB; Jain S; Mollura DJ
    EJNMMI Res; 2013 Jul; 3(1):55. PubMed ID: 23879987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions.
    El Hallani S; Poh CF; Macaulay CE; Follen M; Guillaud M; Lane P
    Oral Oncol; 2013 Jun; 49(6):582-90. PubMed ID: 23415144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.
    Caballo M; Boone JM; Mann R; Sechopoulos I
    Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility Study of a Novel Protease-Activated Fluorescent Imaging System for Real-Time, Intraoperative Detection of Residual Breast Cancer in Breast Conserving Surgery.
    Smith BL; Lanahan CR; Specht MC; Kelly BN; Brown C; Strasfeld DB; Ferrer JM; Rai U; Tang R; Rice-Stitt T; Biernacka A; Brachtel EF; Gadd MA
    Ann Surg Oncol; 2020 Jun; 27(6):1854-1861. PubMed ID: 31898104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification.
    Mesa KJ; Selmic LE; Pande P; Monroy GL; Reagan J; Samuelson J; Driskell E; Li J; Marjanovic M; Chaney EJ; Boppart SA
    Lasers Surg Med; 2017 Mar; 49(3):240-248. PubMed ID: 28319274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel imaging system permits real-time in vivo tumor bed assessment after resection of naturally occurring sarcomas in dogs.
    Eward WC; Mito JK; Eward CA; Carter JE; Ferrer JM; Kirsch DG; Brigman BE
    Clin Orthop Relat Res; 2013 Mar; 471(3):834-42. PubMed ID: 22972654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin-activated fluorescent imaging system.
    Smith BL; Gadd MA; Lanahan CR; Rai U; Tang R; Rice-Stitt T; Merrill AL; Strasfeld DB; Ferrer JM; Brachtel EF; Specht MC
    Breast Cancer Res Treat; 2018 Sep; 171(2):413-420. PubMed ID: 29948401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coherence tomography for neurosurgical imaging of human intracortical melanoma.
    Boppart SA; Brezinski ME; Pitris C; Fujimoto JG
    Neurosurgery; 1998 Oct; 43(4):834-41. PubMed ID: 9766311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images.
    Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK
    Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative comparison of 3D third harmonic generation and fluorescence microscopy images.
    Zhang Z; Kuzmin NV; Groot ML; de Munck JC
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28464543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: creation of an oncology database.
    Papadimitroulas P; Loudos G; Le Maitre A; Hatt M; Tixier F; Efthimiou N; Nikiforidis GC; Visvikis D; Kagadis GC
    Med Phys; 2013 Nov; 40(11):112506. PubMed ID: 24320465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic contrast-enhanced micro-computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts.
    Pöschinger T; Renner A; Eisa F; Dobosz M; Strobel S; Weber TG; Brauweiler R; Kalender WA; Scheuer W
    Invest Radiol; 2014 Jul; 49(7):445-56. PubMed ID: 24598441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection.
    Matula P; Kumar A; Wörz I; Erfle H; Bartenschlager R; Eils R; Rohr K
    Cytometry A; 2009 Apr; 75(4):309-18. PubMed ID: 19006066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pulse coupled neural network segmentation algorithm for reflectance confocal images of epithelial tissue.
    Harris MA; Van AN; Malik BH; Jabbour JM; Maitland KC
    PLoS One; 2015; 10(3):e0122368. PubMed ID: 25816131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.