BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23824962)

  • 1. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks.
    Arendt T; Bullmann T
    Am J Physiol Regul Integr Comp Physiol; 2013 Sep; 305(5):R478-89. PubMed ID: 23824962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals.
    Arendt T; Stieler J; Strijkstra AM; Hut RA; Rüdiger J; Van der Zee EA; Harkany T; Holzer M; Härtig W
    J Neurosci; 2003 Aug; 23(18):6972-81. PubMed ID: 12904458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurodegeneration and plasticity.
    Arendt T
    Int J Dev Neurosci; 2004 Nov; 22(7):507-14. PubMed ID: 15465280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hibernation model of tau phosphorylation in hamsters: selective vulnerability of cholinergic basal forebrain neurons - implications for Alzheimer's disease.
    Härtig W; Stieler J; Boerema AS; Wolf J; Schmidt U; Weissfuss J; Bullmann T; Strijkstra AM; Arendt T
    Eur J Neurosci; 2007 Jan; 25(1):69-80. PubMed ID: 17241268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters.
    Bullmann T; Seeger G; Stieler J; Hanics J; Reimann K; Kretzschmann TP; Hilbrich I; Holzer M; Alpár A; Arendt T
    Hippocampus; 2016 Mar; 26(3):301-18. PubMed ID: 26332578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer's disease pathology.
    Arendt T; Stieler J; Holzer M
    J Neural Transm (Vienna); 2015 Apr; 122(4):531-9. PubMed ID: 25480630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications of the axon initial segment during the hibernation of the Syrian hamster.
    León-Espinosa G; Antón-Fernández A; Tapia-González S; DeFelipe J; Muñoz A
    Brain Struct Funct; 2018 Dec; 223(9):4307-4321. PubMed ID: 30219944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation.
    Stieler JT; Bullmann T; Kohl F; Tøien Ø; Brückner MK; Härtig W; Barnes BM; Arendt T
    PLoS One; 2011 Jan; 6(1):e14530. PubMed ID: 21267079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolomic Study of Hibernating Syrian Hamster Brains: In Search of Neuroprotective Agents.
    Gonzalez-Riano C; León-Espinosa G; Regalado-Reyes M; García A; DeFelipe J; Barbas C
    J Proteome Res; 2019 Mar; 18(3):1175-1190. PubMed ID: 30623656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological regulation of tau phosphorylation during hibernation.
    Su B; Wang X; Drew KL; Perry G; Smith MA; Zhu X
    J Neurochem; 2008 Jun; 105(6):2098-108. PubMed ID: 18284615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular Prion Protein Mediates the Disruption of Hippocampal Synaptic Plasticity by Soluble Tau
    Ondrejcak T; Klyubin I; Corbett GT; Fraser G; Hong W; Mably AJ; Gardener M; Hammersley J; Perkinton MS; Billinton A; Walsh DM; Rowan MJ
    J Neurosci; 2018 Dec; 38(50):10595-10606. PubMed ID: 30355631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New directions in synaptic and network plasticity--a move away from NMDA receptor mediated plasticity.
    McBain CJ
    J Physiol; 2008 Mar; 586(6):1473-4. PubMed ID: 18344227
    [No Abstract]   [Full Text] [Related]  

  • 13. Modulation of synaptic plasticity and Tau phosphorylation by wild-type and mutant presenilin1.
    Dewachter I; Ris L; Croes S; Borghgraef P; Devijver H; Voets T; Nilius B; Godaux E; Van Leuven F
    Neurobiol Aging; 2008 May; 29(5):639-52. PubMed ID: 17222948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faulty regulation of tau phosphorylation by the reelin signal transduction pathway is a potential mechanism of pathogenesis and therapeutic target in Alzheimer's disease.
    Deutsch SI; Rosse RB; Deutsch LH
    Eur Neuropsychopharmacol; 2006 Dec; 16(8):547-51. PubMed ID: 16504486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells.
    Lovestone S; Reynolds CH; Latimer D; Davis DR; Anderton BH; Gallo JM; Hanger D; Mulot S; Marquardt B; Stabel S
    Curr Biol; 1994 Dec; 4(12):1077-86. PubMed ID: 7704571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of microtubule dynamics by microtubule-associated protein expression and phosphorylation during neuronal development.
    Avila J; Domínguez J; Díaz-Nido J
    Int J Dev Biol; 1994 Mar; 38(1):13-25. PubMed ID: 8074993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of the tau protein sequence 199-205 in the hippocampal CA3 region of Syrian hamsters in adulthood and during aging.
    Härtig W; Oklejewicz M; Strijkstra AM; Boerema AS; Stieler J; Arendt T
    Brain Res; 2005 Sep; 1056(1):100-4. PubMed ID: 16095576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease.
    Iqbal K; Grundke-Iqbal I
    Mol Neurobiol; 1991; 5(2-4):399-410. PubMed ID: 1726645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced tau phosphorylation: functional neuroplasticity or neuronal vulnerability?
    Rissman RA
    J Alzheimers Dis; 2009; 18(2):453-7. PubMed ID: 19584431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hibernation Impairs Odor Discrimination - Implications for Alzheimer's Disease.
    Bullmann T; Feneberg E; Kretzschmann TP; Ogunlade V; Holzer M; Arendt T
    Front Neuroanat; 2019; 13():69. PubMed ID: 31379517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.