BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23825032)

  • 1. Efficient isolation and accurate in situ analysis of circulating tumor cells using detachable beads and a high-pore-density filter.
    Lee HJ; Oh JH; Oh JM; Park JM; Lee JG; Kim MS; Kim YJ; Kang HJ; Jeong J; Kim SI; Lee SS; Choi JW; Huh N
    Angew Chem Int Ed Engl; 2013 Aug; 52(32):8337-40. PubMed ID: 23825032
    [No Abstract]   [Full Text] [Related]  

  • 2. Enrichment of cancer cells from whole blood using a microfabricated porous filter.
    Kim EH; Lee JK; Kim BC; Rhim SH; Kim JW; Kim KH; Jung SM; Park PS; Park HC; Lee J; Jeon BH
    Anal Biochem; 2013 Sep; 440(1):114-6. PubMed ID: 23747280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal tumor cell isolation method enabled by fibrin-coated microchannels.
    Zhang J; Fan ZH
    Analyst; 2016 Jan; 141(2):563-6. PubMed ID: 26568434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer.
    Hosokawa M; Yoshikawa T; Negishi R; Yoshino T; Koh Y; Kenmotsu H; Naito T; Takahashi T; Yamamoto N; Kikuhara Y; Kanbara H; Tanaka T; Yamaguchi K; Matsunaga T
    Anal Chem; 2013 Jun; 85(12):5692-8. PubMed ID: 23706033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood.
    Sano MB; Henslee EA; Schmelz E; Davalos RV
    Electrophoresis; 2011 Nov; 32(22):3164-71. PubMed ID: 22102497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-propelled microrockets to capture and isolate circulating tumor cells.
    Gao W; Farokhzad OC
    Angew Chem Int Ed Engl; 2011 Aug; 50(32):7220-1. PubMed ID: 21728224
    [No Abstract]   [Full Text] [Related]  

  • 8. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis.
    Hyun KA; Jung HI
    Electrophoresis; 2013 Apr; 34(7):1028-41. PubMed ID: 23436295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new device for rapid isolation by size and characterization of rare circulating tumor cells.
    Desitter I; Guerrouahen BS; Benali-Furet N; Wechsler J; Jänne PA; Kuang Y; Yanagita M; Wang L; Berkowitz JA; Distel RJ; Cayre YE
    Anticancer Res; 2011 Feb; 31(2):427-41. PubMed ID: 21378321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromachine-enabled capture and isolation of cancer cells in complex media.
    Balasubramanian S; Kagan D; Hu CM; Campuzano S; Lobo-Castañon MJ; Lim N; Kang DY; Zimmerman M; Zhang L; Wang J
    Angew Chem Int Ed Engl; 2011 Apr; 50(18):4161-4. PubMed ID: 21472835
    [No Abstract]   [Full Text] [Related]  

  • 11. FISH-based determination of HER2 status in circulating tumor cells isolated with the microfluidic CEE™ platform.
    Mayer JA; Pham T; Wong KL; Scoggin J; Sales EV; Clarin T; Pircher TJ; Mikolajczyk SD; Cotter PD; Bischoff FZ
    Cancer Genet; 2011 Nov; 204(11):589-95. PubMed ID: 22200084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isolation of circulating tumor cells in blood by means of "Isolation by SizE of Tumor cells (ISET)"].
    Liadov VK; Skrypnikova MA; Popova OP
    Vopr Onkol; 2014; 60(5):548-52. PubMed ID: 25816657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Circulating tumor cells: isolation, quantification, and relevance of their translation into clinical practice].
    Olivier Gómez C; Carballido Rodríguez J
    Actas Urol Esp; 2010 Jan; 34(1):3-5. PubMed ID: 20223125
    [No Abstract]   [Full Text] [Related]  

  • 14. Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood.
    Han KH; Han A; Frazier AB
    Biosens Bioelectron; 2006 Apr; 21(10):1907-14. PubMed ID: 16529922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of flow cytometry and RT-PCR in the detection of circulating PSA-positive cells in prostate cancer.
    Fadlon EJ; Hamdy FC
    Methods Mol Biol; 1998; 92():215-25. PubMed ID: 9664517
    [No Abstract]   [Full Text] [Related]  

  • 16. Transferrin-mediated rapid targeting, isolation, and detection of circulating tumor cells by multifunctional magneto-dendritic nanosystem.
    Banerjee SS; Jalota-Badhwar A; Satavalekar SD; Bhansali SG; Aher ND; Mascarenhas RR; Paul D; Sharma S; Khandare JJ
    Adv Healthc Mater; 2013 Jun; 2(6):800-5. PubMed ID: 23184885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple packed bed device for antibody labelled rare cell capture from whole blood.
    Kralj JG; Arya C; Tona A; Forbes TP; Munson MS; Sorbara L; Srivastava S; Forry SP
    Lab Chip; 2012 Dec; 12(23):4972-5. PubMed ID: 23079718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tapered-slit membrane filters for high-throughput viable circulating tumor cell isolation.
    Kang YT; Doh I; Cho YH
    Biomed Microdevices; 2015 Apr; 17(2):45. PubMed ID: 25790944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Tumor cell separation by cell saver and membrane filter passage].
    Wiesel M; Güdemann C; Staehler G
    Infusionstherapie; 1991 Jun; 18(3):143-4. PubMed ID: 1917056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.