These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23825086)

  • 41. Contribution of the forelimbs and hindlimbs of the horse to mechanical energy changes in jumping.
    Bobbert MF; Santamaría S
    J Exp Biol; 2005 Jan; 208(Pt 2):249-60. PubMed ID: 15634844
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential leg function in a sprawled-posture quadrupedal trotter.
    Chen JJ; Peattie AM; Autumn K; Full RJ
    J Exp Biol; 2006 Jan; 209(Pt 2):249-59. PubMed ID: 16391347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Jumping characteristics of naïve foals: lead changes and description of temporal and linear parameters.
    Santamaría S; Back W; van Weeren PR; Knaap J; Barneveld A
    Equine Vet J Suppl; 2002 Sep; (34):302-7. PubMed ID: 12405705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Function of a large biarticular hip and knee extensor during walking and running in guinea fowl (Numida meleagris).
    Carr JA; Ellerby DJ; Marsh RL
    J Exp Biol; 2011 Oct; 214(Pt 20):3405-13. PubMed ID: 21957104
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The functional importance of human foot muscles for bipedal locomotion.
    Farris DJ; Kelly LA; Cresswell AG; Lichtwark GA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1645-1650. PubMed ID: 30655349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Locomotor kinematics and EMG activity during quadrupedal versus bipedal gait in the Japanese macaque.
    Higurashi Y; Maier MA; Nakajima K; Morita K; Fujiki S; Aoi S; Mori F; Murata A; Inase M
    J Neurophysiol; 2019 Jul; 122(1):398-412. PubMed ID: 31116630
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative architectural properties of limb muscles in Crocodylidae and Alligatoridae and their relevance to divergent use of asymmetrical gaits in extant Crocodylia.
    Allen V; Molnar J; Parker W; Pollard A; Nolan G; Hutchinson JR
    J Anat; 2014 Dec; 225(6):569-82. PubMed ID: 25418112
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits.
    Vereecke EE; D'Août K; Aerts P
    J Hum Evol; 2006 May; 50(5):552-67. PubMed ID: 16516949
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphological correlates of aquatic and terrestrial locomotion in a semi-aquatic frog, Rana esculenta: no evidence for a design conflict.
    Nauwelaerts S; Ramsay J; Aerts P
    J Anat; 2007 Mar; 210(3):304-17. PubMed ID: 17331179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods.
    Fujiwara S; Hutchinson JR
    Proc Biol Sci; 2012 Jul; 279(1738):2561-70. PubMed ID: 22357261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arboreal locomotion in rats - the challenge of maintaining stability.
    Schmidt A; Fischer MS
    J Exp Biol; 2010 Nov; 213(Pt 21):3615-24. PubMed ID: 20952609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-speed gallop locomotion in the thoroughbred racehorse. I. The effect of incline on stride parameters.
    Parsons KJ; Pfau T; Wilson AM
    J Exp Biol; 2008 Mar; 211(Pt 6):935-44. PubMed ID: 18310119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Economy and Endurance in Human Evolution.
    Pontzer H
    Curr Biol; 2017 Jun; 27(12):R613-R621. PubMed ID: 28633035
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effective Mechanical Advantage Allometry of Felid Elbow and Knee Extensors.
    Harper CM; Sylvester AD
    Anat Rec (Hoboken); 2019 May; 302(5):775-784. PubMed ID: 30312539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuromuscular control of locomotion is altered by tail autotomy in geckos.
    Jagnandan K; Higham TE
    J Exp Biol; 2018 Sep; 221(Pt 18):. PubMed ID: 30026242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational modelling of muscle fibre operating ranges in the hindlimb of a small ground bird (Eudromia elegans), with implications for modelling locomotion in extinct species.
    Bishop PJ; Michel KB; Falisse A; Cuff AR; Allen VR; De Groote F; Hutchinson JR
    PLoS Comput Biol; 2021 Apr; 17(4):e1008843. PubMed ID: 33793558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Function of the extrinsic hindlimb muscles in trotting dogs.
    Schilling N; Fischbein T; Yang EP; Carrier DR
    J Exp Biol; 2009 Apr; 212(Pt 7):1036-52. PubMed ID: 19282501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How to build your dragon: scaling of muscle architecture from the world's smallest to the world's largest monitor lizard.
    Dick TJ; Clemente CJ
    Front Zool; 2016; 13():8. PubMed ID: 26893606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Not so fast: speed effects on forelimb kinematics in cercopithecine monkeys and implications for digitigrade postures in primates.
    Patel BA
    Am J Phys Anthropol; 2009 Sep; 140(1):92-112. PubMed ID: 19294733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats.
    Frigon A; Thibaudier Y; Hurteau MF
    Neuroscience; 2015 Apr; 290():266-78. PubMed ID: 25644423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.