These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23825212)

  • 1. Can terrestrial ectotherms escape the heat of climate change by moving?
    Buckley LB; Tewksbury JJ; Deutsch CA
    Proc Biol Sci; 2013 Aug; 280(1765):20131149. PubMed ID: 23825212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of climate warming on terrestrial ectotherms across latitude.
    Deutsch CA; Tewksbury JJ; Huey RB; Sheldon KS; Ghalambor CK; Haak DC; Martin PR
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6668-72. PubMed ID: 18458348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent dispersal and ectotherm species' distributions in a warming world.
    Amarasekare P
    J Anim Ecol; 2024 Apr; 93(4):428-446. PubMed ID: 38406823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature variation makes ectotherms more sensitive to climate change.
    Paaijmans KP; Heinig RL; Seliga RA; Blanford JI; Blanford S; Murdock CC; Thomas MB
    Glob Chang Biol; 2013 Aug; 19(8):2373-80. PubMed ID: 23630036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate heterogeneity modulates impact of warming on tropical insects.
    Bonebrake TC; Deutsch CA
    Ecology; 2012 Mar; 93(3):449-55. PubMed ID: 22624199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity.
    Pincebourde S; Suppo C
    Integr Comp Biol; 2016 Jul; 56(1):85-97. PubMed ID: 27371561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond the Mean: Biological Impacts of Cryptic Temperature Change.
    Sheldon KS; Dillon ME
    Integr Comp Biol; 2016 Jul; 56(1):110-9. PubMed ID: 27081192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect Development, Thermal Plasticity and Fitness Implications in Changing, Seasonal Environments.
    Buckley LB; Arakaki AJ; Cannistra AF; Kharouba HM; Kingsolver JG
    Integr Comp Biol; 2017 Nov; 57(5):988-998. PubMed ID: 28662575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of tolerance variation in vulnerability forecasting of insects.
    Diamond SE; Yilmaz AR
    Curr Opin Insect Sci; 2018 Oct; 29():85-92. PubMed ID: 30551831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating measurements of acclimation for climate change adaptation.
    Terblanche JS; Hoffmann AA
    Curr Opin Insect Sci; 2020 Oct; 41():7-16. PubMed ID: 32570175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change.
    Johnson CA; Ren R; Buckley LB
    Am Nat; 2023 Dec; 202(6):753-766. PubMed ID: 38033177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect  species.
    Johansson F; Orizaola G; Nilsson-Örtman V
    Sci Rep; 2020 Jun; 10(1):8822. PubMed ID: 32483233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world.
    González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F
    Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change.
    Kingsolver JG; Buckley LB
    Curr Opin Insect Sci; 2020 Oct; 41():17-24. PubMed ID: 32599547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics.
    Boukal DS; Bideault A; Carreira BM; Sentis A
    Curr Opin Insect Sci; 2019 Oct; 35():88-95. PubMed ID: 31445412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: Adaptation of ruminant livestock production systems to climate changes.
    Henry BK; Eckard RJ; Beauchemin KA
    Animal; 2018 Dec; 12(s2):s445-s456. PubMed ID: 30092851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming.
    Kearney M; Shine R; Porter WP
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3835-40. PubMed ID: 19234117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains.
    Polato NR; Gill BA; Shah AA; Gray MM; Casner KL; Barthelet A; Messer PW; Simmons MP; Guayasamin JM; Encalada AC; Kondratieff BC; Flecker AS; Thomas SA; Ghalambor CK; Poff NL; Funk WC; Zamudio KR
    Proc Natl Acad Sci U S A; 2018 Dec; 115(49):12471-12476. PubMed ID: 30397141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts.
    Bonebrake TC; Boggs CL; Stamberger JA; Deutsch CA; Ehrlich PR
    Proc Biol Sci; 2014 Oct; 281(1793):. PubMed ID: 25165769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.