These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23825398)

  • 1. Self in motion: sensorimotor and cognitive mechanisms in gait agency.
    Kannape OA; Blanke O
    J Neurophysiol; 2013 Oct; 110(8):1837-47. PubMed ID: 23825398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agency, gait and self-consciousness.
    Kannape OA; Blanke O
    Int J Psychophysiol; 2012 Feb; 83(2):191-9. PubMed ID: 22226801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeling in control of your footsteps: Conscious gait monitoring and the auditory consequences of footsteps.
    Menzer F; Brooks A; Halje P; Faller C; Vetterli M; Blanke O
    Cogn Neurosci; 2010 Sep; 1(3):184-92. PubMed ID: 24168334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment.
    Kizony R; Levin MF; Hughey L; Perez C; Fung J
    Phys Ther; 2010 Feb; 90(2):252-60. PubMed ID: 20023003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
    Kannape OA; Barré A; Aminian K; Blanke O
    PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
    Mulavara AP; Bloomberg JJ
    J Vestib Res; 2002-2003; 12(5-6):255-69. PubMed ID: 14501102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait-dependent motor memory facilitation in covert movement execution.
    Courtine G; Papaxanthis C; Gentili R; Pozzo T
    Brain Res Cogn Brain Res; 2004 Dec; 22(1):67-75. PubMed ID: 15561502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of lower peripheral visual cues in the visuomotor coordination of locomotion and prehension.
    Graci V
    Gait Posture; 2011 Oct; 34(4):514-8. PubMed ID: 21807520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal analysis of locomotion in BALB/cByJ and C57BL/6J mice in different environmental conditions.
    Lepicard EM; Venault P; Abourachid A; Pellé E; Chapouthier G; Gasc JP
    Behav Brain Res; 2006 Feb; 167(2):365-72. PubMed ID: 16290280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-body gaze control mechanisms elicited during locomotion: effects of VOR adaptation.
    Mulavara AP; Houser J; Miller C; Bloomberg JJ
    J Vestib Res; 2005; 15(5-6):279-89. PubMed ID: 16614474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A contribution of area 5 of the posterior parietal cortex to the planning of visually guided locomotion: limb-specific and limb-independent effects.
    Andujar JE; Lajoie K; Drew T
    J Neurophysiol; 2010 Feb; 103(2):986-1006. PubMed ID: 20018828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocortical activity is coupled to gait cycle phase during treadmill walking.
    Gwin JT; Gramann K; Makeig S; Ferris DP
    Neuroimage; 2011 Jan; 54(2):1289-96. PubMed ID: 20832484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of focal cerebellar lesions on the control and adaptation of gait.
    Ilg W; Giese MA; Gizewski ER; Schoch B; Timmann D
    Brain; 2008 Nov; 131(Pt 11):2913-27. PubMed ID: 18835866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of human locomotion under various task constraints.
    Montagne G; Buekers M; de Rugy A; Camachon C; Laurent M
    Exp Brain Res; 2002 Mar; 143(1):133-6. PubMed ID: 11907700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-task effect on gait balance control in adolescents with concussion.
    Howell DR; Osternig LR; Chou LS
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1513-20. PubMed ID: 23643687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects.
    Wagner J; Solis-Escalante T; Grieshofer P; Neuper C; Müller-Putz G; Scherer R
    Neuroimage; 2012 Nov; 63(3):1203-11. PubMed ID: 22906791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings.
    Goetz L; Piallat B; Thibaudier Y; Montigon O; David O; Chabardès S
    J Neurosci Methods; 2012 Mar; 204(2):306-17. PubMed ID: 22155386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interacting effect of cognitive and motor task demands on performance of gait, balance and cognition in young adults.
    Szturm T; Maharjan P; Marotta JJ; Shay B; Shrestha S; Sakhalkar V
    Gait Posture; 2013 Sep; 38(4):596-602. PubMed ID: 23477841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limb kinematics during locomotion in the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus.
    Nyakatura JA; Petrovitch A; Fischer MS
    Zoology (Jena); 2010 Aug; 113(4):221-34. PubMed ID: 20637572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.