BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23825418)

  • 1. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1.
    Nienborg H; Hasenstaub A; Nauhaus I; Taniguchi H; Huang ZJ; Callaway EM
    J Neurosci; 2013 Jul; 33(27):11145-54. PubMed ID: 23825418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.
    Li F; Jiang W; Wang TY; Xie T; Yao H
    Neuroscience; 2018 May; 379():359-374. PubMed ID: 29608945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual representations by cortical somatostatin inhibitory neurons--selective but with weak and delayed responses.
    Ma WP; Liu BH; Li YT; Huang ZJ; Zhang LI; Tao HW
    J Neurosci; 2010 Oct; 30(43):14371-9. PubMed ID: 20980594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons.
    Rikhye RV; Yildirim M; Hu M; Breton-Provencher V; Sur M
    J Neurosci; 2021 Oct; 41(42):8761-8778. PubMed ID: 34493543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two expressions of "surround suppression" in V1 that arise independent of cortical mechanisms of suppression.
    Tailby C; Solomon SG; Peirce JW; Metha AB
    Vis Neurosci; 2007; 24(1):99-109. PubMed ID: 17430613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround.
    Lakunina AA; Nardoci MB; Ahmadian Y; Jaramillo S
    J Neurosci; 2020 Apr; 40(18):3564-3575. PubMed ID: 32220950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial integration in mouse primary visual cortex.
    Vaiceliunaite A; Erisken S; Franzen F; Katzner S; Busse L
    J Neurophysiol; 2013 Aug; 110(4):964-72. PubMed ID: 23719206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique Spatial Integration in Mouse Primary Visual Cortex and Higher Visual Areas.
    Murgas KA; Wilson AM; Michael V; Glickfeld LL
    J Neurosci; 2020 Feb; 40(9):1862-1873. PubMed ID: 31949109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing.
    Cottam JC; Smith SL; Häusser M
    J Neurosci; 2013 Dec; 33(50):19567-78. PubMed ID: 24336721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells.
    Safari MS; Mirnajafi-Zadeh J; Hioki H; Tsumoto T
    Sci Rep; 2017 Oct; 7(1):12764. PubMed ID: 28986578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons.
    Cavanaugh JR; Bair W; Movshon JA
    J Neurophysiol; 2002 Nov; 88(5):2547-56. PubMed ID: 12424293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of response reliability by parvalbumin-expressing interneurons in visual cortex.
    Zhu Y; Qiao W; Liu K; Zhong H; Yao H
    Nat Commun; 2015 Apr; 6():6802. PubMed ID: 25869033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.
    Li LY; Xiong XR; Ibrahim LA; Yuan W; Tao HW; Zhang LI
    Cereb Cortex; 2015 Jul; 25(7):1782-91. PubMed ID: 24425250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.
    Gonchar Y; Burkhalter A
    J Neurosci; 2003 Nov; 23(34):10904-12. PubMed ID: 14645486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer 3 Dynamically Coordinates Columnar Activity According to Spatial Context.
    Plomp G; Larderet I; Fiorini M; Busse L
    J Neurosci; 2019 Jan; 39(2):281-294. PubMed ID: 30459226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response selectivity is correlated to dendritic structure in parvalbumin-expressing inhibitory neurons in visual cortex.
    Runyan CA; Sur M
    J Neurosci; 2013 Jul; 33(28):11724-33. PubMed ID: 23843539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of parvalbumin and somatostatin-expressing GABAergic neurons to slow oscillations and the balance in beta-gamma oscillations across cortical layers.
    Kuki T; Fujihara K; Miwa H; Tamamaki N; Yanagawa Y; Mushiake H
    Front Neural Circuits; 2015; 9():6. PubMed ID: 25691859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity in Lateral Visual Areas Contributes to Surround Suppression in Awake Mouse V1.
    Vangeneugden J; van Beest EH; Cohen MX; Lorteije JAM; Mukherjee S; Kirchberger L; Montijn JS; Thamizharasu P; Camillo D; Levelt CN; Roelfsema PR; Self MW; Heimel JA
    Curr Biol; 2019 Dec; 29(24):4268-4275.e7. PubMed ID: 31786063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells.
    Xu X; Roby KD; Callaway EM
    J Comp Neurol; 2010 Feb; 518(3):389-404. PubMed ID: 19950390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.