These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23825433)

  • 1. Strong correlations between sensitivity and variability give rise to constant discrimination thresholds across the otolith afferent population.
    Jamali M; Carriot J; Chacron MJ; Cullen KE
    J Neurosci; 2013 Jul; 33(27):11302-13. PubMed ID: 23825433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection thresholds of macaque otolith afferents.
    Yu XJ; Dickman JD; Angelaki DE
    J Neurosci; 2012 Jun; 32(24):8306-16. PubMed ID: 22699911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
    Curthoys IS; Kim J; McPhedran SK; Camp AJ
    Exp Brain Res; 2006 Nov; 175(2):256-67. PubMed ID: 16761136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular convergence patterns in vestibular nuclei neurons of alert primates.
    Dickman JD; Angelaki DE
    J Neurophysiol; 2002 Dec; 88(6):3518-33. PubMed ID: 12466465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy.
    Sadeghi SG; Minor LB; Cullen KE
    J Neurophysiol; 2007 Feb; 97(2):1503-14. PubMed ID: 17122313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli.
    Schneider AD; Jamali M; Carriot J; Chacron MJ; Cullen KE
    J Neurosci; 2015 Apr; 35(14):5522-36. PubMed ID: 25855169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception.
    Carriot J; Jamali M; Brooks JX; Cullen KE
    J Neurosci; 2015 Feb; 35(8):3555-65. PubMed ID: 25716854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for the role of vestibular efference.
    Cullen KE; Minor LB
    J Neurosci; 2002 Jun; 22(11):RC226. PubMed ID: 12040085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses.
    Angelaki DE; Dickman JD
    J Neurophysiol; 2000 Oct; 84(4):2113-32. PubMed ID: 11024100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations.
    Jamali M; Sadeghi SG; Cullen KE
    J Neurophysiol; 2009 Jan; 101(1):141-9. PubMed ID: 18971293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response properties of pigeon otolith afferents to linear acceleration.
    Si X; Angelaki DE; Dickman JD
    Exp Brain Res; 1997 Nov; 117(2):242-50. PubMed ID: 9419070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements.
    Zupan LH; Merfeld DM; Darlot C
    Biol Cybern; 2002 Mar; 86(3):209-30. PubMed ID: 12068787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coding strategies in the otolith system differ for translational head motion vs. static orientation relative to gravity.
    Jamali M; Carriot J; Chacron MJ; Cullen KE
    Elife; 2019 Jun; 8():. PubMed ID: 31199243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of vestibular neurons during rotational motion in alert rhesus monkeys.
    Dickman JD; Angelaki DE
    Exp Brain Res; 2004 Mar; 155(1):91-101. PubMed ID: 15064889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of canal plugging on the vestibuloocular reflex and vestibular nerve discharge during passive and active head rotations.
    Sadeghi SG; Goldberg JM; Minor LB; Cullen KE
    J Neurophysiol; 2009 Nov; 102(5):2693-703. PubMed ID: 19726724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats.
    Huang J; Tang X; Xu Y; Zhang C; Chen T; Yu Y; Mustain W; Allison J; Iversen MM; Rabbitt RD; Zhou W; Zhu H
    J Assoc Res Otolaryngol; 2022 Jun; 23(3):435-453. PubMed ID: 35378621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direction discrimination thresholds of vestibular and cerebellar nuclei neurons.
    Liu S; Yakusheva T; Deangelis GC; Angelaki DE
    J Neurosci; 2010 Jan; 30(2):439-48. PubMed ID: 20071508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig.
    Kim J; Curthoys IS
    Brain Res Bull; 2004 Sep; 64(3):265-71. PubMed ID: 15464864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of semicircular canal and otolith afferents to small angle static head tilts in the gerbil.
    Perachio AA; Correia MJ
    Brain Res; 1983 Dec; 280(2):287-98. PubMed ID: 6652489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2425-40. PubMed ID: 8793754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.