These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23825643)

  • 1. Optimisation of wavelength modulated Raman spectroscopy: towards high throughput cell screening.
    Praveen BB; Mazilu M; Marchington RF; Herrington CS; Riches A; Dholakia K
    PLoS One; 2013; 8(6):e67211. PubMed ID: 23825643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples.
    Canetta E; Mazilu M; De Luca AC; Carruthers AE; Dholakia K; Neilson S; Sargeant H; Briscoe T; Herrington CS; Riches AC
    J Biomed Opt; 2011 Mar; 16(3):037002. PubMed ID: 21456875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative detection of pharmaceuticals using a combination of paper microfluidics and wavelength modulated Raman spectroscopy.
    Craig D; Mazilu M; Dholakia K
    PLoS One; 2015; 10(5):e0123334. PubMed ID: 25938464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy.
    Canetta E; Riches A; Borger E; Herrington S; Dholakia K; Adya AK
    Acta Biomater; 2014 May; 10(5):2043-55. PubMed ID: 24406196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.
    Praveen BB; Ashok PC; Mazilu M; Riches A; Herrington S; Dholakia K
    J Biomed Opt; 2012 Jul; 17(7):077006. PubMed ID: 22894519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy.
    Mazilu M; De Luca AC; Riches A; Herrington CS; Dholakia K
    Opt Express; 2010 May; 18(11):11382-95. PubMed ID: 20588999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online fluorescence suppression in modulated Raman spectroscopy.
    De Luca AC; Mazilu M; Riches A; Herrington CS; Dholakia K
    Anal Chem; 2010 Jan; 82(2):738-45. PubMed ID: 20017474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening.
    Feng S; Li Z; Chen G; Lin D; Huang S; Huang Z; Li Y; Lin J; Chen R; Zeng H
    Nanotechnology; 2015 Feb; 26(6):065101. PubMed ID: 25598539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Screening Raman Spectroscopy Platform for Label-Free Cellomics.
    Schie IW; Rüger J; Mondol AS; Ramoji A; Neugebauer U; Krafft C; Popp J
    Anal Chem; 2018 Feb; 90(3):2023-2030. PubMed ID: 29286634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.
    Grimbergen MC; van Swol CF; Kendall C; Verdaasdonk RM; Stone N; Bosch JL
    Appl Spectrosc; 2010 Jan; 64(1):8-14. PubMed ID: 20132590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional Generative Adversarial Network for Spectral Recovery to Accelerate Single-Cell Raman Spectroscopic Analysis.
    Ma X; Wang K; Chou KC; Li Q; Lu X
    Anal Chem; 2022 Jan; 94(2):577-582. PubMed ID: 34978788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra.
    Barton S; Alakkari S; O'Dwyer K; Ward T; Hennelly B
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy.
    Horgan CC; Jensen M; Nagelkerke A; St-Pierre JP; Vercauteren T; Stevens MM; Bergholt MS
    Anal Chem; 2021 Dec; 93(48):15850-15860. PubMed ID: 34797972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-content screening Raman spectroscopy (HCS-RS) of panitumumab-exposed colorectal cancer cells.
    Mondol AS; El-Mashtoly SF; Frick T; Gerwert K; Popp J; Schie IW
    Analyst; 2019 Oct; 144(20):6098-6107. PubMed ID: 31531499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving skin Raman spectral quality by fluorescence photobleaching.
    Wang H; Zhao J; Lee AM; Lui H; Zeng H
    Photodiagnosis Photodyn Ther; 2012 Dec; 9(4):299-302. PubMed ID: 23200009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy.
    Woolford L; Chen M; Dholakia K; Herrington CS
    J Biophotonics; 2018 Apr; 11(4):e201700244. PubMed ID: 29283510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximizing throughput in label-free microspectroscopy with hybrid Raman imaging.
    Pavillon N; Smith NI
    J Biomed Opt; 2015 Jan; 20(1):016007. PubMed ID: 25572258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput, high-resolution Echelle deep-UV Raman spectrometer.
    Bykov SV; Sharma B; Asher SA
    Appl Spectrosc; 2013 Aug; 67(8):873-83. PubMed ID: 23876726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging.
    Rowlands CJ; Varma S; Perkins W; Leach I; Williams H; Notingher I
    J Biophotonics; 2012 Mar; 5(3):220-9. PubMed ID: 22180147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomy of noise in quantitative biological Raman spectroscopy.
    Smulko JM; Dingari NC; Soares JS; Barman I
    Bioanalysis; 2014 Feb; 6(3):411-21. PubMed ID: 24471960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.