BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23825794)

  • 1. PTree: pattern-based, stochastic search for maximum parsimony phylogenies.
    Gregor I; Steinbrück L; McHardy AC
    PeerJ; 2013; 1():e89. PubMed ID: 23825794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation.
    Hoang DT; Vinh LS; Flouri T; Stamatakis A; von Haeseler A; Minh BQ
    BMC Evol Biol; 2018 Feb; 18(1):11. PubMed ID: 29390973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of gain and loss events from phyletic patterns using stochastic mapping and maximum parsimony--a simulation study.
    Cohen O; Pupko T
    Genome Biol Evol; 2011; 3():1265-75. PubMed ID: 21971516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
    Nguyen LT; Schmidt HA; von Haeseler A; Minh BQ
    Mol Biol Evol; 2015 Jan; 32(1):268-74. PubMed ID: 25371430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic search strategy for estimation of maximum likelihood phylogenetic trees.
    Salter LA; Pearl DK
    Syst Biol; 2001 Feb; 50(1):7-17. PubMed ID: 12116596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards improving searches for optimal phylogenies.
    Ford E; St John K; Wheeler WC
    Syst Biol; 2015 Jan; 64(1):56-65. PubMed ID: 25164916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shortest triplet clustering: reconstructing large phylogenies using representative sets.
    Vinh le S; von Haeseler A
    BMC Bioinformatics; 2005 Apr; 6():92. PubMed ID: 15819989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural EM algorithm for phylogenetic inference.
    Friedman N; Ninio M; Pe'er I; Pupko T
    J Comput Biol; 2002; 9(2):331-53. PubMed ID: 12015885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online Phylogenetics with matOptimize Produces Equivalent Trees and is Dramatically More Efficient for Large SARS-CoV-2 Phylogenies than de novo and Maximum-Likelihood Implementations.
    Kramer AM; Thornlow B; Ye C; De Maio N; McBroome J; Hinrichs AS; Lanfear R; Turakhia Y; Corbett-Detig R
    Syst Biol; 2023 Nov; 72(5):1039-1051. PubMed ID: 37232476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference for phylogenies under a hybrid parsimony method: evolutionary-symmetric transversion parsimony.
    Sinsheimer JS; Lake JA; Little RJ
    Biometrics; 1997 Mar; 53(1):23-38. PubMed ID: 9147592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data.
    O'Reilly JE; Puttick MN; Pisani D; Donoghue PCJ
    Palaeontology; 2018 Jan; 61(1):105-118. PubMed ID: 29398726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PQ, a new program for phylogeny reconstruction.
    Penzar D; Krivozubov M; Spirin S
    BMC Bioinformatics; 2018 Oct; 19(1):374. PubMed ID: 30314446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood.
    Wu Y
    Evolution; 2012 Mar; 66(3):763-775. PubMed ID: 22380439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.
    Guindon S; Gascuel O
    Syst Biol; 2003 Oct; 52(5):696-704. PubMed ID: 14530136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models.
    Bansal MS; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S42. PubMed ID: 20122216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parsimony analysis of phylogenomic datasets (II): evaluation of PAUP*, MEGA and MPBoot.
    Goloboff PA; Catalano SA; Torres A
    Cladistics; 2022 Feb; 38(1):126-146. PubMed ID: 35049082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ancestral sequence alignment under optimal conditions.
    Hudek AK; Brown DG
    BMC Bioinformatics; 2005 Nov; 6():273. PubMed ID: 16293191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New approaches to phylogenetic tree search and their application to large numbers of protein alignments.
    Whelan S
    Syst Biol; 2007 Oct; 56(5):727-40. PubMed ID: 17849327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and Practical Considerations when using Retroelement Insertions to Estimate Species Trees in the Anomaly Zone.
    Molloy EK; Gatesy J; Springer MS
    Syst Biol; 2022 Apr; 71(3):721-740. PubMed ID: 34677617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tree Reconstruction Game: Phylogenetic Reconstruction Using Reinforcement Learning.
    Azouri D; Granit O; Alburquerque M; Mansour Y; Pupko T; Mayrose I
    Mol Biol Evol; 2024 Jun; 41(6):. PubMed ID: 38829798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.