BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 23825970)

  • 1. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs.
    Edelheit S; Schwartz S; Mumbach MR; Wurtzel O; Sorek R
    PLoS Genet; 2013 Jun; 9(6):e1003602. PubMed ID: 23825970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base-Resolution Sequencing Methods for Whole-Transcriptome Quantification of mRNA Modifications.
    Zhang LS; Dai Q; He C
    Acc Chem Res; 2024 Jan; 57(1):47-58. PubMed ID: 38079380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.
    Gaspin C; Cavaillé J; Erauso G; Bachellerie JP
    J Mol Biol; 2000 Apr; 297(4):895-906. PubMed ID: 10736225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytidine Acetylation Across the Tree of Life.
    Thalalla Gamage S; Howpay Manage SA; Chu TT; Meier JL
    Acc Chem Res; 2024 Feb; 57(3):338-348. PubMed ID: 38226431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution.
    Khoddami V; Yerra A; Mosbruger TL; Fleming AM; Burrows CJ; Cairns BR
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6784-6789. PubMed ID: 30872485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae.
    Burgess AL; David R; Searle IR
    BMC Plant Biol; 2015 Aug; 15():199. PubMed ID: 26268215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases.
    Auxilien S; Rasmussen A; Rose S; Brochier-Armanet C; Husson C; Fourmy D; Grosjean H; Douthwaite S
    RNA; 2011 Jan; 17(1):45-53. PubMed ID: 21051506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation.
    Chou HJ; Donnard E; Gustafsson HT; Garber M; Rando OJ
    Mol Cell; 2017 Dec; 68(5):978-992.e4. PubMed ID: 29198561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs.
    Legrand C; Tuorto F; Hartmann M; Liebers R; Jacob D; Helm M; Lyko F
    Genome Res; 2017 Sep; 27(9):1589-1596. PubMed ID: 28684555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA 5-Methylcytosine Analysis by Bisulfite Sequencing.
    Schaefer M
    Methods Enzymol; 2015; 560():297-329. PubMed ID: 26253976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of 20 novel ribosomal leader candidates in bacteria and archaea.
    Eckert I; Weinberg Z
    BMC Microbiol; 2020 May; 20(1):130. PubMed ID: 32448158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis.
    Kanaya S; Yamada Y; Kudo Y; Ikemura T
    Gene; 1999 Sep; 238(1):143-55. PubMed ID: 10570992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey and Validation of tRNA Modifications and Their Corresponding Genes in
    de Crécy-Lagard V; Ross RL; Jaroch M; Marchand V; Eisenhart C; Brégeon D; Motorin Y; Limbach PA
    Biomolecules; 2020 Jun; 10(7):. PubMed ID: 32629984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-linking of the anticodon of Escherichia coli and Bacillus subtilis acetylvalyl-tRNA to the ribosomal P site. Characterization of a unique site in both E. coli 16S and yeast 18S ribosomal RNA.
    Ehresmann C; Ehresmann B; Millon R; Ebel JP; Nurse K; Ofengand J
    Biochemistry; 1984 Jan; 23(3):429-37. PubMed ID: 6422982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surpassing limits of static RNA modification analysis with dynamic NAIL-MS.
    Reichle VF; Kaiser S; Heiss M; Hagelskamp F; Borland K; Kellner S
    Methods; 2019 Mar; 156():91-101. PubMed ID: 30395967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3-methylcytidine modification in the tRNA anti-codon loop.
    D'Silva S; Haider SJ; Phizicky EM
    RNA; 2011 Jun; 17(6):1100-10. PubMed ID: 21518804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three distinct 3-methylcytidine (m
    Xu L; Liu X; Sheng N; Oo KS; Liang J; Chionh YH; Xu J; Ye F; Gao YG; Dedon PC; Fu XY
    J Biol Chem; 2017 Sep; 292(35):14695-14703. PubMed ID: 28655767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme.
    Motorin Y; Grosjean H
    RNA; 1999 Aug; 5(8):1105-18. PubMed ID: 10445884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6.
    Selmi T; Hussain S; Dietmann S; Heiß M; Borland K; Flad S; Carter JM; Dennison R; Huang YL; Kellner S; Bornelöv S; Frye M
    Nucleic Acids Res; 2021 Jan; 49(2):1006-1022. PubMed ID: 33330931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping.
    Sas-Chen A; Thomas JM; Matzov D; Taoka M; Nance KD; Nir R; Bryson KM; Shachar R; Liman GLS; Burkhart BW; Gamage ST; Nobe Y; Briney CA; Levy MJ; Fuchs RT; Robb GB; Hartmann J; Sharma S; Lin Q; Florens L; Washburn MP; Isobe T; Santangelo TJ; Shalev-Benami M; Meier JL; Schwartz S
    Nature; 2020 Jul; 583(7817):638-643. PubMed ID: 32555463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.