These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23826734)

  • 1. RNaseIII and T4 polynucleotide Kinase sequence biases and solutions during RNA-seq library construction.
    Lee C; Harris RA; Wall JK; Mayfield RD; Wilke CO
    Biol Direct; 2013 Jul; 8():16. PubMed ID: 23826734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of prokaryotic strand-specific primary-transcripts saturated RNASeq library by controlled heat magnesium-dependent mRNA degradation.
    Mironov KS; Shumskaya M; Los DA
    Biochimie; 2020 Oct; 177():63-67. PubMed ID: 32805305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for assigning double-stranded RNA structures.
    Brown TS; Bevilacqua PC
    Biotechniques; 2005 Mar; 38(3):368, 370, 372. PubMed ID: 15786803
    [No Abstract]   [Full Text] [Related]  

  • 4. Kinase-catalyzed biotinylation of DNA.
    Anthony TM; Pflum MKH
    Bioorg Med Chem; 2018 May; 26(9):2331-2336. PubMed ID: 29627193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Fragmentation and Sequencing (RF-Seq): Cost-Effective, Time-Efficient, and High-Throughput 3' mRNA Sequencing Library Construction in a Single Tube.
    Veeranagouda Y; Remaury A; Guillemot JC; Didier M
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e109. PubMed ID: 31763778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimized protocol for generation and analysis of Ion Proton sequencing reads for RNA-Seq.
    Yuan Y; Xu H; Leung RK
    BMC Genomics; 2016 May; 17():403. PubMed ID: 27229683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-mediated RNA fragmentation allows robust transcript reassembly upon whole transcriptome RNA-Seq.
    Wery M; Descrimes M; Thermes C; Gautheret D; Morillon A
    Methods; 2013 Sep; 63(1):25-31. PubMed ID: 23523657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme.
    Wang LK; Lima CD; Shuman S
    EMBO J; 2002 Jul; 21(14):3873-80. PubMed ID: 12110598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved TGIRT-seq methods for comprehensive transcriptome profiling with decreased adapter dimer formation and bias correction.
    Xu H; Yao J; Wu DC; Lambowitz AM
    Sci Rep; 2019 May; 9(1):7953. PubMed ID: 31138886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.
    Liu X; Shi X; Chen C; Zhang L
    BMC Bioinformatics; 2015 Oct; 16():332. PubMed ID: 26475308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeling efficiency of oligonucleotides by T4 polynucleotide kinase depends on 5'-nucleotide.
    van Houten V; Denkers F; van Dijk M; van den Brekel M; Brakenhoff R
    Anal Biochem; 1998 Dec; 265(2):386-9. PubMed ID: 9882420
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of a 5'-polynucleotide kinase/3'-phosphatase from bacteriophage RM378.
    Blondal T; Hjorleifsdottir S; Aevarsson A; Fridjonsson OH; Skirnisdottir S; Wheat JO; Hermannsdottir AG; Hreggvidsson GO; Smith AV; Kristjansson JK
    J Biol Chem; 2005 Feb; 280(7):5188-94. PubMed ID: 15579472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis using RNA-Seq.
    Hoeijmakers WA; Bártfai R; Stunnenberg HG
    Methods Mol Biol; 2013; 923():221-39. PubMed ID: 22990781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Library preparation methods for next-generation sequencing: tone down the bias.
    van Dijk EL; Jaszczyszyn Y; Thermes C
    Exp Cell Res; 2014 Mar; 322(1):12-20. PubMed ID: 24440557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and biochemical analysis of the functional domains of yeast tRNA ligase.
    Sawaya R; Schwer B; Shuman S
    J Biol Chem; 2003 Nov; 278(45):43928-38. PubMed ID: 12933796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guide for library design and bias correction for large-scale transcriptome studies using highly multiplexed RNAseq methods.
    Katayama S; Skoog T; Söderhäll C; Einarsdottir E; Krjutškov K; Kere J
    BMC Bioinformatics; 2019 Aug; 20(1):418. PubMed ID: 31409293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase synthesis of oligoribonucleotides using T4 RNA ligase and T4 polynucleotide kinase.
    Vratskikh LV; Komarova NI; Yamkovoy VI
    Biochimie; 1995; 77(4):227-32. PubMed ID: 8589049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.
    Pareek CS; Smoczyński R; Kadarmideen HN; Dziuba P; Błaszczyk P; Sikora M; Walendzik P; Grzybowski T; Pierzchała M; Horbańczuk J; Szostak A; Ogluszka M; Zwierzchowski L; Czarnik U; Fraser L; Sobiech P; Wąsowicz K; Gelfand B; Feng Y; Kumar D
    PLoS One; 2016; 11(9):e0161370. PubMed ID: 27606429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive detection of T4 polynucleotide kinase activity by coupling split DNAzyme and ligation-triggered DNAzyme cascade amplification.
    Liu S; Ming J; Lin Y; Wang C; Cheng C; Liu T; Wang L
    Biosens Bioelectron; 2014 May; 55():225-30. PubMed ID: 24384264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient ligation of small RNA molecules for microRNA quantitation by high-throughput sequencing.
    Lee JE; Yi R
    J Vis Exp; 2014 Nov; (93):e52095. PubMed ID: 25490151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.