BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23827097)

  • 1. The potential of antiviral agents to control classical swine fever: a modelling study.
    Backer JA; Vrancken R; Neyts J; Goris N
    Antiviral Res; 2013 Sep; 99(3):245-50. PubMed ID: 23827097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical swine fever outbreak containment using antiviral supplementation: a potential alternative to emergency vaccination and stamping-out.
    Ribbens S; Goris N; Neyts J; Dewulf J
    Prev Vet Med; 2012 Sep; 106(1):34-41. PubMed ID: 22465433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of control and surveillance strategies for classical swine fever using a simulation model.
    Dürr S; Zu Dohna H; Di Labio E; Carpenter TE; Doherr MG
    Prev Vet Med; 2013 Jan; 108(1):73-84. PubMed ID: 22858424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approved and experimental countermeasures against pestiviral diseases: Bovine viral diarrhea, classical swine fever and border disease.
    Newcomer BW; Givens MD
    Antiviral Res; 2013 Oct; 100(1):133-50. PubMed ID: 23928259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark.
    Boklund A; Toft N; Alban L; Uttenthal A
    Prev Vet Med; 2009 Aug; 90(3-4):180-93. PubMed ID: 19439381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark.
    Boklund A; Goldbach SG; Uttenthal A; Alban L
    Prev Vet Med; 2008 Jul; 85(3-4):187-206. PubMed ID: 18339438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vaccination against foot-and-mouth disease I: epidemiological consequences.
    Backer JA; Hagenaars TJ; Nodelijk G; van Roermund HJ
    Prev Vet Med; 2012 Nov; 107(1-2):27-40. PubMed ID: 22749763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying classical swine fever virus: making the best of a bad virus.
    Ji W; Guo Z; Ding NZ; He CQ
    Virus Res; 2015 Feb; 197():35-47. PubMed ID: 25510481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical swine fever: comparison of oronasal immunisation with CP7E2alf marker and C-strain vaccines in domestic pigs.
    Tignon M; Kulcsár G; Haegeman A; Barna T; Fábián K; Lévai R; Van der Stede Y; Farsang A; Vrancken R; Belák K; Koenen F
    Vet Microbiol; 2010 Apr; 142(1-2):59-68. PubMed ID: 19857935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-host variation structure of classical swine fever virus NS5B in relation to antiviral therapy.
    Haegeman A; Vrancken R; Neyts J; Koenen F
    Antiviral Res; 2013 May; 98(2):266-72. PubMed ID: 23511203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling disease outbreaks in wildlife using limited culling: modelling classical swine fever incursions in wild pigs in Australia.
    Cowled BD; Garner MG; Negus K; Ward MP
    Vet Res; 2012 Jan; 43(1):3. PubMed ID: 22243996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of intradermally administrated E2 subunit vaccines in reducing horizontal transmission of classical swine fever virus.
    Dortmans JC; Loeffen WL; Weerdmeester K; van der Poel WH; de Bruin MG
    Vaccine; 2008 Feb; 26(9):1235-42. PubMed ID: 18242794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of marker vaccine candidate CP7_E2alf in piglets with maternally derived C-strain antibodies.
    Rangelova D; Nielsen J; Strandbygaard B; Koenen F; Blome S; Uttenthal A
    Vaccine; 2012 Oct; 30(45):6376-81. PubMed ID: 22939909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast-expressed classical swine fever virus glycoprotein E2 induces a protective immune response.
    Lin GJ; Liu TY; Tseng YY; Chen ZW; You CC; Hsuan SL; Chien MS; Huang C
    Vet Microbiol; 2009 Nov; 139(3-4):369-74. PubMed ID: 19625145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative impact of porcine reproductive and respiratory syndrome virus infection on the efficacy of classical swine fever vaccine.
    Suradhat S; Kesdangsakonwut S; Sada W; Buranapraditkun S; Wongsawang S; Thanawongnuwech R
    Vaccine; 2006 Mar; 24(14):2634-42. PubMed ID: 16406169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early onset and long lasting protection in pigs provided by a classical swine fever E2-vaccine candidate produced in the milk of goats.
    Barrera M; Sánchez O; Farnós O; Rodríguez MP; Domínguez P; Tait H; Frías M; Avila M; Vega E; Toledo JR
    Vet Immunol Immunopathol; 2010 Jan; 133(1):25-32. PubMed ID: 19640591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors critical for successful vaccination against classical swine fever in endemic areas.
    Suradhat S; Damrongwatanapokin S; Thanawongnuwech R
    Vet Microbiol; 2007 Jan; 119(1):1-9. PubMed ID: 17097243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost-effectiveness of measures to prevent classical swine fever introduction into The Netherlands.
    De Vos CJ; Saatkamp HW; Huirne RB
    Prev Vet Med; 2005 Sep; 70(3-4):235-56. PubMed ID: 15927286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of maternal antibodies after oral vaccination of young female wild boar against classical swine fever.
    Kaden V; Lange E
    Vet Microbiol; 2004 Oct; 103(1-2):115-9. PubMed ID: 15381274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two newly developed E(rns)-based ELISAs allow the differentiation of Classical Swine Fever virus-infected from marker-vaccinated animals and the discrimination of pestivirus antibodies.
    Aebischer A; Müller M; Hofmann MA
    Vet Microbiol; 2013 Jan; 161(3-4):274-85. PubMed ID: 22902189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.