These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23827157)

  • 21. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study.
    Sharaf B; Faris CB; Abukawa H; Susarla SM; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2012 Mar; 70(3):647-56. PubMed ID: 22079064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect.
    Kwon DY; Park JH; Jang SH; Park JY; Jang JW; Min BH; Kim WD; Lee HB; Lee J; Kim MS
    J Tissue Eng Regen Med; 2018 Feb; 12(2):516-528. PubMed ID: 28763610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. rhVEGF 165 delivered in a porous beta-tricalcium phosphate scaffold accelerates bridging of critical-sized defects in rabbit radii.
    Yang P; Wang C; Shi Z; Huang X; Dang X; Li X; Lin SF; Wang K
    J Biomed Mater Res A; 2010 Feb; 92(2):626-40. PubMed ID: 19235222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.
    Yamadi S; Kobayashi S
    J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Manufacture and study of porous poly(l-lactic acid) (PLLA)/beta-tricalcium phosphate (beta-TCP) composite].
    Chen R; Chen H; Han J; Zhou D; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):177-80. PubMed ID: 11450528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model.
    Lee JY; Son SJ; Son JS; Kang SS; Choi SH
    Biomed Res Int; 2016; 2016():2136215. PubMed ID: 27042660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Pore Size on the Osteoconductivity and Mechanical Properties of Calcium Phosphate Cement in a Rabbit Model.
    Zhao YN; Fan JJ; Li ZQ; Liu YW; Wu YP; Liu J
    Artif Organs; 2017 Feb; 41(2):199-204. PubMed ID: 27401022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting.
    Gao L; Li C; Chen F; Liu C
    Biomed Mater; 2015 Jun; 10(3):035009. PubMed ID: 26107985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits.
    Chen SH; Lei M; Xie XH; Zheng LZ; Yao D; Wang XL; Li W; Zhao Z; Kong A; Xiao DM; Wang DP; Pan XH; Wang YX; Qin L
    Acta Biomater; 2013 May; 9(5):6711-22. PubMed ID: 23376238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BMSC seeding in different scaffold incorporation with hyperbaric oxygen treats seawater-immersed bony defect.
    Zhang G; Chen X; Cheng X; Ma W; Chen C
    J Orthop Surg Res; 2021 Apr; 16(1):249. PubMed ID: 33849602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospun Poly(l-lactide)/Poly(ethylene glycol) Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair.
    Lv X; Guo Q; Han F; Chen C; Ling C; Chen W; Li B
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffold.
    Roshan-Ghias A; Terrier A; Bourban PE; Pioletti DP
    Eur Cell Mater; 2010 Feb; 19():41-9. PubMed ID: 20178097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vancomycin containing PLLA/β-TCP controls experimental osteomyelitis in vivo.
    Kankilic B; Bilgic E; Korkusuz P; Korkusuz F
    J Orthop Surg Res; 2014 Nov; 9():114. PubMed ID: 25407446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-existence effect of tricalcium phosphate and bioactive glass on biological and biodegradation characteristic of Poly L-Lactic Acid (PLLA) in trinary composite scaffold form.
    Ghasemi A; Hashemi B
    Biomed Mater Eng; 2017; 28(6):655-669. PubMed ID: 29171974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.
    Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J
    J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of novel bioresorbable scaffold composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles on inflammation and calcification of surrounding tissues after implantation.
    Feng G; Qin C; Yi X; Xia J; Chen J; Chen X; Chen T; Jiang X
    J Mater Sci Mater Med; 2018 Jul; 29(8):112. PubMed ID: 30019182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.