These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23827323)

  • 1. In situ SERS probing of nano-silver coated individual yeast cells.
    Chrimes AF; Khoshmanesh K; Tang SY; Wood BR; Stoddart PR; Collins SS; Mitchell A; Kalantar-zadeh K
    Biosens Bioelectron; 2013 Nov; 49():536-41. PubMed ID: 23827323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device.
    Li B; Zhang W; Chen L; Lin B
    Electrophoresis; 2013 Aug; 34(15):2162-8. PubMed ID: 23712933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy.
    Sujith A; Itoh T; Abe H; Yoshida K; Kiran MS; Biju V; Ishikawa M
    Anal Bioanal Chem; 2009 Aug; 394(7):1803-9. PubMed ID: 19557398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform.
    Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK
    Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering.
    Hassoun M; Rüger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J
    Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver coated aluminium microrods as highly colloidal stable SERS platforms.
    Pazos-Perez N; Borke T; Andreeva DV; Alvarez-Puebla RA
    Nanoscale; 2011 Aug; 3(8):3265-8. PubMed ID: 21734994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of low concentrations of ampicillin in milk.
    Andreou C; Mirsafavi R; Moskovits M; Meinhart CD
    Analyst; 2015 Aug; 140(15):5003-5. PubMed ID: 26087055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ microfluidic SERS assay for monitoring enzymatic breakdown of organophosphates.
    Liberman V; Hamad-Schifferli K; Thorsen TA; Wick ST; Carr PA
    Nanoscale; 2015 Jul; 7(25):11013-23. PubMed ID: 26041657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection.
    Potara M; Baia M; Farcau C; Astilean S
    Nanotechnology; 2012 Feb; 23(5):055501. PubMed ID: 22236478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift.
    Luo XL; Buckhout-White S; Bentley WE; Rubloff GW
    Biofabrication; 2011 Sep; 3(3):034108. PubMed ID: 21725151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering.
    Chrimes AF; Khoshmanesh K; Stoddart PR; Kayani AA; Mitchell A; Daima H; Bansal V; Kalantar-zadeh K
    Anal Chem; 2012 May; 84(9):4029-35. PubMed ID: 22468827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast electrically assisted regeneration of on-chip SERS substrates.
    Meier TA; Poehler E; Kemper F; Pabst O; Jahnke HG; Beckert E; Robitzki A; Belder D
    Lab Chip; 2015 Jul; 15(14):2923-7. PubMed ID: 26040796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic fabrication of SERS-active microspheres for molecular detection.
    Hwang H; Kim SH; Yang SM
    Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants.
    Yazdi SH; White IM
    Anal Chem; 2012 Sep; 84(18):7992-8. PubMed ID: 22924879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering (SERS) spectra of hemoglobin of mouse and rabbit with self-assembled nano-silver film.
    Kang Y; Si M; Zhu Y; Miao L; Xu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():177-80. PubMed ID: 23474476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water.
    Krafft B; Tycova A; Urban RD; Dusny C; Belder D
    Electrophoresis; 2021 Jan; 42(1-2):86-94. PubMed ID: 32391575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite Sensor Particles for Tuned SERS Sensing: Microfluidic Synthesis, Properties and Applications.
    Visaveliya N; Lenke S; Köhler JM
    ACS Appl Mater Interfaces; 2015 May; 7(20):10742-54. PubMed ID: 25939496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular SERS sensing and imaging.
    Potara M; Boca S; Licarete E; Damert A; Alupei MC; Chiriac MT; Popescu O; Schmidt U; Astilean S
    Nanoscale; 2013 Jul; 5(13):6013-22. PubMed ID: 23715524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.