These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 23827334)

  • 1. Estimation of the elastic parameters of human liver biomechanical models by means of medical images and evolutionary computation.
    Martínez-Martínez F; Rupérez MJ; Martín-Guerrero JD; Monserrat C; Lago MA; Pareja E; Brugger S; López-Andújar R
    Comput Methods Programs Biomed; 2013 Sep; 111(3):537-49. PubMed ID: 23827334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of several biomechanical models for the simulation of lamb liver behaviour using similarity coefficients from medical image.
    Martínez-Martínez F; Lago MA; Rupérez MJ; Monserrat C
    Comput Methods Biomech Biomed Engin; 2013; 16(7):747-57. PubMed ID: 22463393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations.
    Ahn B; Kim J
    Med Image Anal; 2010 Apr; 14(2):138-48. PubMed ID: 19948423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new methodology for the in vivo estimation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea.
    Lago MA; Rupérez MJ; Martínez-Martínez F; Monserrat C; Larra E; Güell JL; Peris-Martínez C
    J Biomech; 2015 Jan; 48(1):38-43. PubMed ID: 25465193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient multi-modal dense field non-rigid registration: alignment of histological and section images.
    du Bois d'Aische A; Craene MD; Geets X; Gregoire V; Macq B; Warfield SK
    Med Image Anal; 2005 Dec; 9(6):538-46. PubMed ID: 15897000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study about coefficients to estimate the error in biomechanical models used to virtually simulate the organ behaviors.
    Lago MA; Martínez-Martínez F; Rupérez MJ; Monserrat C; Alcañiz M
    Stud Health Technol Inform; 2012; 173():250-6. PubMed ID: 22356996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-based variational meshing.
    Goksel O; Salcudean SE
    IEEE Trans Med Imaging; 2011 Jan; 30(1):11-21. PubMed ID: 20601308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the biomechanical and injury response of human liver parenchyma under tensile loading.
    Untaroiu CD; Lu YC; Siripurapu SK; Kemper AR
    J Mech Behav Biomed Mater; 2015 Jan; 41():280-91. PubMed ID: 25092147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.
    Pitiot A; Toga AW; Thompson PM
    IEEE Trans Med Imaging; 2002 Aug; 21(8):910-23. PubMed ID: 12472264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity-based optimization.
    Hopp T; Dietzel M; Baltzer PA; Kreisel P; Kaiser WA; Gemmeke H; Ruiter NV
    Med Image Anal; 2013 Feb; 17(2):209-18. PubMed ID: 23265802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different material models to simulate 3-d breast deformations using finite element analysis.
    Eder M; Raith S; Jalali J; Volf A; Settles M; Machens HG; Kovacs L
    Ann Biomed Eng; 2014 Apr; 42(4):843-57. PubMed ID: 24346816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized image-based soft tissue deformation algorithms for visualization of haptic needle insertion.
    Fortmeier D; Mastmeyer A; Handels H
    Stud Health Technol Inform; 2013; 184():136-40. PubMed ID: 23400145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelet-domain medical image denoising using bivariate laplacian mixture model.
    Rabbani H; Nezafat R; Gazor S
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2826-37. PubMed ID: 19695984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methodology based on genetic heuristics for in-vivo characterizing the patient-specific biomechanical behavior of the breast tissues.
    Lago MA; Rúperez MJ; Martínez-Martínez F; Martínez-Sanchis S; Bakic PR; Monserrat C
    Expert Syst Appl; 2015 Nov; 42(21):7942-7950. PubMed ID: 27103760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropometric dependence of the response of a thorax FE model under high speed loading: validation and real world accident replication.
    Roth S; Torres F; Feuerstein P; Thoral-Pierre K
    Comput Methods Programs Biomed; 2013 May; 110(2):160-70. PubMed ID: 23246086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of spring parameters for deformable object simulation.
    Lloyd B; Székely G; Harders M
    IEEE Trans Vis Comput Graph; 2007; 13(5):1081-94. PubMed ID: 17622689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver tissue characterization from uniaxial stress-strain data using probabilistic and inverse finite element methods.
    Fu YB; Chui CK; Teo CL
    J Mech Behav Biomed Mater; 2013 Apr; 20():105-12. PubMed ID: 23455167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
    Chanthasopeephan T; Desai JP; Lau AC
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):349-59. PubMed ID: 17355046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.