These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23827574)

  • 41. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli.
    Kuppan P; Vasanthan KS; Sundaramurthi D; Krishnan UM; Sethuraman S
    Biomacromolecules; 2011 Sep; 12(9):3156-65. PubMed ID: 21800891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite.
    Jaiswal AK; Chhabra H; Soni VP; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro bioactivity and biocompatibility of dicalcium silicate cements for endodontic use.
    Chen CC; Ho CC; David Chen CH; Wang WC; Ding SJ
    J Endod; 2009 Nov; 35(11):1554-7. PubMed ID: 19840646
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improvement of the cytocompatibility of electrospun poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] mats by Ecoflex.
    Wang A; Gan Y; Yu H; Liu Y; Zhang M; Cheng B; Wang F; Wang H; Yan J
    J Biomed Mater Res A; 2012 Jun; 100(6):1505-11. PubMed ID: 22408070
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of low dose teicoplanin-loaded acrylic bone cement on biocompatibility of bone cement.
    Öztemür Z; Sümer Z; Tunç T; Pazarcé Ö; Bulut O
    Acta Microbiol Immunol Hung; 2013 Jun; 60(2):117-25. PubMed ID: 23827744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone.
    Arens D; Rothstock S; Windolf M; Boger A
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acrylic bone cements: influence of time and environment on physical properties.
    Nottrott M
    Acta Orthop Suppl; 2010 Jun; 81(341):1-27. PubMed ID: 20486859
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue.
    Lye KW; Tideman H; Wolke JC; Merkx MA; Chin FK; Jansen JA
    Clin Oral Implants Res; 2013 Aug; 24 Suppl A100():100-9. PubMed ID: 22150934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New biodegradable polyhydroxybutyrate/layered silicate nanocomposites.
    Maiti P; Batt CA; Giannelis EP
    Biomacromolecules; 2007 Nov; 8(11):3393-400. PubMed ID: 17958439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigations into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface properties causing delayed osteoblast growth.
    Keen I; Raggatt LJ; Cool SM; Nurcombe V; Fredericks P; Trau M; Grøndahl L
    J Biomater Sci Polym Ed; 2007; 18(9):1101-23. PubMed ID: 17931502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone.
    Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T
    J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts.
    Oliva A; Della Ragione F; Salerno A; Riccio V; Tartaro G; Cozzolino A; D'Amato S; Pontoni G; Zappia V
    Biomaterials; 1996 Jul; 17(13):1351-6. PubMed ID: 8805985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty.
    Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity.
    Li T; Weng X; Bian Y; Zhou L; Cui F; Qiu Z
    PLoS One; 2015; 10(6):e0129018. PubMed ID: 26039750
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical and degradation properties of poly(methyl methacrylate) cement/borate bioactive glass composites.
    Cole KA; Funk GA; Rahaman MN; McIff TE
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2765-2775. PubMed ID: 32170915
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In Vitro and In Vivo Response to Low-Modulus PMMA-Based Bone Cement.
    Carlsson E; Mestres G; Treerattrakoon K; López A; Karlsson Ott M; Larsson S; Persson C
    Biomed Res Int; 2015; 2015():594284. PubMed ID: 26366415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.
    Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H
    Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiscale characterization of acrylic bone cement modified with functionalized mesoporous silica nanoparticles.
    Slane J; Vivanco J; Ebenstein D; Squire M; Ploeg HL
    J Mech Behav Biomed Mater; 2014 Sep; 37():141-52. PubMed ID: 24911668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.