These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23827597)

  • 1. Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin.
    Singhal A; Deymier-Black AC; Almer JD; Dunand DC
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1467-75. PubMed ID: 23827597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions.
    Deymier-Black AC; Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2013 Feb; 9(2):5305-12. PubMed ID: 22871638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of high-energy X-ray irradiation on creep mechanisms in bone and dentin.
    Deymier-Black AC; Singhal A; Yuan F; Almer JD; Brinson LC; Dunand DC
    J Mech Behav Biomed Mater; 2013 May; 21():17-31. PubMed ID: 23454365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin.
    Deymier-Black AC; Almer JD; Stock SR; Haeffner DR; Dunand DC
    Acta Biomater; 2010 Jun; 6(6):2172-80. PubMed ID: 19925891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.
    Deymier-Black AC; Yuan F; Singhal A; Almer JD; Brinson LC; Dunand DC
    Acta Biomater; 2012 Jan; 8(1):253-61. PubMed ID: 21878399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone.
    Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2012 Jul; 8(7):2747-58. PubMed ID: 22465576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high-energy X-ray doses on bone elastic properties and residual strains.
    Singhal A; Deymier-Black AC; Almer JD; Dunand DC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1774-86. PubMed ID: 22098877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cyclic loading on the nanoscale deformation of hydroxyapatite and collagen fibrils in bovine bone.
    Singhal A; Stock SR; Almer JD; Dunand DC
    Biomech Model Mechanobiol; 2014 Jun; 13(3):615-26. PubMed ID: 23958833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of gamma irradiation on mechanical properties of human cortical bone: influence of different processing methods.
    Kaminski A; Jastrzebska A; Grazka E; Marowska J; Gut G; Wojciechowski A; Uhrynowska-Tyszkiewicz I
    Cell Tissue Bank; 2012 Aug; 13(3):363-74. PubMed ID: 22538985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice strains and load partitioning in bovine trabecular bone.
    Akhtar R; Daymond MR; Almer JD; Mummery PM
    Acta Biomater; 2011 Feb; 7(2):716-23. PubMed ID: 20951842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method on strain measurement of HAP in cortical bone from diffusive profile of X-ray diffraction.
    Fujisaki K; Tadano S; Sasaki N
    J Biomech; 2006; 39(3):579-86. PubMed ID: 16389098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration and radiation effects on the residual stress state of cortical bone.
    Tung PK; Mudie S; Daniels JE
    Acta Biomater; 2013 Dec; 9(12):9503-7. PubMed ID: 23917041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction.
    Almer JD; Stock SR
    J Struct Biol; 2005 Oct; 152(1):14-27. PubMed ID: 16183302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization.
    Burton B; Gaspar A; Josey D; Tupy J; Grynpas MD; Willett TL
    Bone; 2014 Apr; 61():71-81. PubMed ID: 24440514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.
    Stock SR; Yuan F; Brinson LC; Almer JD
    J Biomech; 2011 Jan; 44(2):291-6. PubMed ID: 21051040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model.
    Puxkandl R; Zizak I; Paris O; Keckes J; Tesch W; Bernstorff S; Purslow P; Fratzl P
    Philos Trans R Soc Lond B Biol Sci; 2002 Feb; 357(1418):191-7. PubMed ID: 11911776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction.
    Akhtar R; Daymond MR; Almer JD; Mummery PM
    Acta Biomater; 2008 Nov; 4(6):1677-87. PubMed ID: 18555757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of partition of stress between mineral and collagen phases in bone using X-ray diffraction techniques.
    Borsato KS; Sasaki N
    J Biomech; 1997 Sep; 30(9):955-7. PubMed ID: 9302619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation and deformation of mineral crystals in tooth surfaces.
    Fujisaki K; Todoh M; Niida A; Shibuya R; Kitami S; Tadano S
    J Mech Behav Biomed Mater; 2012 Jun; 10():176-82. PubMed ID: 22520429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentine.
    Sui T; Sandholzer MA; Baimpas N; Dolbnya IP; Walmsley A; Lumley PJ; Landini G; Korsunsky AM
    Acta Biomater; 2013 Aug; 9(8):7937-47. PubMed ID: 23602879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.