These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 23827618)
1. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells. Jirka I; Vandrovcová M; Frank O; Tolde Z; Plšek J; Luxbacher T; Bačáková L; Starý V Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1636-45. PubMed ID: 23827618 [TBL] [Abstract][Full Text] [Related]
2. Interaction of human osteoblast-like Saos-2 and MG-63 cells with thermally oxidized surfaces of a titanium-niobium alloy. Vandrovcova M; Jirka I; Novotna K; Lisa V; Frank O; Kolska Z; Stary V; Bacakova L PLoS One; 2014; 9(6):e100475. PubMed ID: 24977704 [TBL] [Abstract][Full Text] [Related]
3. The influence of surface energy of titanium-zirconium alloy on osteoblast cell functions in vitro. Sista S; Wen C; Hodgson PD; Pande G J Biomed Mater Res A; 2011 Apr; 97(1):27-36. PubMed ID: 21308982 [TBL] [Abstract][Full Text] [Related]
4. In vitro biocompatibility of a new titanium-29niobium-13tantalum-4.6zirconium alloy with osteoblast-like MG63 cells. Naganawa T; Ishihara Y; Iwata T; Koide M; Ohguchi M; Ohguchi Y; Murase Y; Kamei H; Sato N; Mizuno M; Noguchi T J Periodontol; 2004 Dec; 75(12):1701-7. PubMed ID: 15732874 [TBL] [Abstract][Full Text] [Related]
5. Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties. Sista S; Wen C; Hodgson PD; Pande G Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1573-82. PubMed ID: 23827610 [TBL] [Abstract][Full Text] [Related]
6. [Biocompatibility of silicon containing micro-arc oxidation coated magnesium alloy ZK60 with osteoblasts cultured in vitro]. Yang X; Yin Q; Zhang Y; Li M; Lan G; Lin X; Tan L; Yang K Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):612-8. PubMed ID: 23879103 [TBL] [Abstract][Full Text] [Related]
7. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853 [TBL] [Abstract][Full Text] [Related]
8. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys. McMahon RE; Ma J; Verkhoturov SV; Munoz-Pinto D; Karaman I; Rubitschek F; Maier HJ; Hahn MS Acta Biomater; 2012 Jul; 8(7):2863-70. PubMed ID: 22465573 [TBL] [Abstract][Full Text] [Related]
9. Influence of different grained powders and pellets made of Niobium and Ti-42Nb on human cell viability. Markhoff J; Weinmann M; Schulze C; Bader R Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():756-766. PubMed ID: 28183670 [TBL] [Abstract][Full Text] [Related]
10. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process. Xiong J; Li Y; Hodgson PD; Wen C Acta Biomater; 2010 Apr; 6(4):1584-90. PubMed ID: 19836001 [TBL] [Abstract][Full Text] [Related]
11. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses. Li J; Shi LL; Zhu ZD; He Q; Ai HJ; Xu J Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2113-21. PubMed ID: 23498239 [TBL] [Abstract][Full Text] [Related]
12. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314 [TBL] [Abstract][Full Text] [Related]
13. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
14. [Bone histocompatibility of surface modified nitinol memory alloy by coating titanium-niobium alloy]. Wang A; Li Y; Zhou H; Peng J; Guo Q; Xu W; Zhao B; Tian Y; Wang X; Yuan M; Lu S Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Jul; 24(7):797-800. PubMed ID: 20695374 [TBL] [Abstract][Full Text] [Related]
15. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Park JW; Kim YJ; Jang JH; Kwon TG; Bae YC; Suh JY Acta Biomater; 2010 Apr; 6(4):1661-70. PubMed ID: 19819355 [TBL] [Abstract][Full Text] [Related]
16. Osteoblast response to thermally oxidized Ti6Al4V alloy. Saldaña L; Vilaboa N; Vallés G; González-Cabrero J; Munuera L J Biomed Mater Res A; 2005 Apr; 73(1):97-107. PubMed ID: 15704115 [TBL] [Abstract][Full Text] [Related]
17. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water. Tanaka H; Mori Y; Noro A; Kogure A; Kamimura M; Yamada N; Hanada S; Masahashi N; Itoi E PLoS One; 2016; 11(2):e0150081. PubMed ID: 26914329 [TBL] [Abstract][Full Text] [Related]
18. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. Saldaña L; Barranco V; González-Carrasco JL; Rodríguez M; Munuera L; Vilaboa N J Biomed Mater Res A; 2007 May; 81(2):334-46. PubMed ID: 17120220 [TBL] [Abstract][Full Text] [Related]
19. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys. da Silva LM; Claro AP; Donato TA; Arana-Chavez VE; Moraes JC; Buzalaf MA; Grandini CR Artif Organs; 2011 May; 35(5):516-21. PubMed ID: 21595721 [TBL] [Abstract][Full Text] [Related]
20. Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Sista S; Nouri A; Li Y; Wen C; Hodgson PD; Pande G J Biomed Mater Res A; 2013 Dec; 101(12):3416-30. PubMed ID: 23559548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]