These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 23827628)

  • 41. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR.
    Nelson M; Balasundaram G; Webster TJ
    Int J Nanomedicine; 2006; 1(3):339-49. PubMed ID: 17717974
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers.
    Jalota S; Bhaduri SB; Tas AC
    J Biomed Mater Res A; 2006 Sep; 78(3):481-90. PubMed ID: 16721798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Why Biphasic? Assessment of the Effect on Cell Proliferation and Expression.
    Schembri-Wismayer P; Camilleri J
    J Endod; 2017 May; 43(5):751-759. PubMed ID: 28292596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solubility of TTCP and beta-TCP by solid titration.
    Pan HB; Darvell BW
    Arch Oral Biol; 2009 Jul; 54(7):671-7. PubMed ID: 19414172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein adsorption and osteoblast responses to different calcium phosphate surfaces.
    Villarreal DR; Sogal A; Ong JL
    J Oral Implantol; 1998; 24(2):67-73. PubMed ID: 9835832
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation and characterization of nano-hydroxyapatite within chitosan matrix.
    Rogina A; Ivanković M; Ivanković H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4539-44. PubMed ID: 24094157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of scaffolds based on α-tricalcium phosphate cements for tissue engineering applications.
    Machado JL; Giehl IC; Nardi NB; dos Santos LA
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1814-9. PubMed ID: 21342838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium phosphate cement scaffolds with PLGA fibers.
    Vasconcellos LA; dos Santos LA
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1032-40. PubMed ID: 23827539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of citrate and NaCl on size, morphology, crystallinity and microstructure of calcium phosphates obtained from aqueous solutions at acidic or near-neutral pH.
    Mekmene O; Rouillon T; Quillard S; Pilet P; Bouler JM; Pezennec S; Gaucheron F
    J Dairy Res; 2012 May; 79(2):238-48. PubMed ID: 22559064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S
    Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering.
    Shavandi A; Bekhit Ael-D; Sun Z; Ali A; Gould M
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():373-83. PubMed ID: 26117768
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival.
    Touri M; Moztarzadeh F; Osman NAA; Dehghan MM; Mozafari M
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():236-242. PubMed ID: 29519434
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties.
    Bose S; Dasgupta S; Tarafder S; Bandyopadhyay A
    Acta Biomater; 2010 Sep; 6(9):3782-90. PubMed ID: 20230922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fine structure analysis and sintering properties of Si-doped hydroxyapatite.
    Qiu ZY; Li G; Zhang YQ; Liu J; Hu W; Ma J; Zhang SM
    Biomed Mater; 2012 Aug; 7(4):045009. PubMed ID: 22652464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite.
    Pazarlioglu SS; Gokce H; Ozyegin S; Salman S
    Biomed Mater Eng; 2014; 24(4):1751-69. PubMed ID: 24948459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of carbonated calcium phosphate ceramics using microwave irradiation.
    Kumar TSS ; Manjubala I; Gunasekaran J
    Biomaterials; 2000 Aug; 21(16):1623-9. PubMed ID: 10905404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of surface undulations of biphasic calcium phosphate tablets on human osteoblast behavior.
    dos Santos EA; Linhares AB; Rossi AM; Farina M; Soares GA
    J Biomed Mater Res A; 2005 Sep; 74(3):315-24. PubMed ID: 16010665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.