These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23828584)

  • 1. Target-directed catalytic metallodrugs.
    Joyner JC; Cowan JA
    Braz J Med Biol Res; 2013 Jun; 46(6):465-85. PubMed ID: 23828584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.
    Joyner JC; Hocharoen L; Cowan JA
    J Am Chem Soc; 2012 Feb; 134(7):3396-410. PubMed ID: 22200082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted cleavage of HIV RRE RNA by Rev-coupled transition metal chelates.
    Joyner JC; Cowan JA
    J Am Chem Soc; 2011 Jun; 133(25):9912-22. PubMed ID: 21585196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA nuclease activity of Rev-coupled transition metal chelates.
    Joyner JC; Keuper KD; Cowan JA
    Dalton Trans; 2012 Jun; 41(21):6567-78. PubMed ID: 22450234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and Mechanisms of Oxidative Cleavage of HIV RRE RNA by Rev-Coupled Transition Metal Chelates.
    Joyner JC; Keuper KD; Cowan JA
    Chem Sci; 2013 Apr; 4(4):1707-1718. PubMed ID: 23626900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N- versus C-domain selectivity of catalytic inactivation of human angiotensin converting enzyme by lisinopril-coupled transition metal chelates.
    Hocharoen L; Joyner JC; Cowan JA
    J Med Chem; 2013 Dec; 56(24):9826-36. PubMed ID: 24228790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of stereochemistry and redox potentials on the single- and double-strand DNA cleavage efficiency of Cu(II) and Ni(II) Lys-Gly-His-derived ATCUN metallopeptides.
    Jin Y; Lewis MA; Gokhale NH; Long EC; Cowan JA
    J Am Chem Soc; 2007 Jul; 129(26):8353-61. PubMed ID: 17552522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches to the design of catalytic metallodrugs.
    Soldevila-Barreda JJ; Sadler PJ
    Curr Opin Chem Biol; 2015 Apr; 25():172-83. PubMed ID: 25765750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs.
    Soldevila-Barreda JJ; Metzler-Nolte N
    Chem Rev; 2019 Jan; 119(2):829-869. PubMed ID: 30618246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic artificial peptidases and nucleases using macromolecular catalytic systems.
    Suh J
    Acc Chem Res; 2003 Jul; 36(7):562-70. PubMed ID: 12859217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA cleavage by copper-ATCUN complexes. Factors influencing cleavage mechanism and linearization of dsDNA.
    Jin Y; Cowan JA
    J Am Chem Soc; 2005 Jun; 127(23):8408-15. PubMed ID: 15941274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallopeptide-promoted inactivation of angiotensin-converting enzyme and endothelin-converting enzyme 1: Toward dual-action therapeutics.
    Gokhale NH; Cowan JA
    J Biol Inorg Chem; 2006 Oct; 11(7):937-47. PubMed ID: 16874470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible vs. rigid bis(2-benzimidazolyl) ligands in Cu(II) complexes: Impact on redox chemistry and oxidative DNA cleavage activity.
    Heinrich J; König NF; Sobottka S; Sarkar B; Kulak N
    J Inorg Biochem; 2019 May; 194():223-232. PubMed ID: 30877897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of human angiotensin converting enzyme by copper peptide complexes containing ATCUN motifs.
    Gokhale NH; Cowan JA
    Chem Commun (Camb); 2005 Dec; (47):5916-8. PubMed ID: 16317474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclophanes as Platforms for Reactive Multimetallic Complexes.
    Ferreira RB; Murray LJ
    Acc Chem Res; 2019 Feb; 52(2):447-455. PubMed ID: 30668108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing metallodrugs with nuclease and protease activity.
    Agbale CM; Cardoso MH; Galyuon IK; Franco OL
    Metallomics; 2016 Nov; 8(11):1159-1169. PubMed ID: 27714031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the Rare-Earth Metal BINOLate Catalytic Multitool beyond Enantioselective Organic Synthesis.
    Panetti GB; Robinson JR; Schelter EJ; Walsh PJ
    Acc Chem Res; 2021 Jun; 54(11):2637-2648. PubMed ID: 34014657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.