BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23828645)

  • 1. Pain hypersensitivity mechanisms at a glance.
    Gangadharan V; Kuner R
    Dis Model Mech; 2013 Jul; 6(4):889-95. PubMed ID: 23828645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide signaling and cutaneous mechanisms of pain transduction.
    Dussor G; Koerber HR; Oaklander AL; Rice FL; Molliver DC
    Brain Res Rev; 2009 Apr; 60(1):24-35. PubMed ID: 19171165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular mechanisms in acute and chronic pain states].
    Rygh LJ; Hole K; Tjølsen A
    Tidsskr Nor Laegeforen; 2005 Sep; 125(17):2374-7. PubMed ID: 16151499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PKCγ interneurons, a gateway to pathological pain in the dorsal horn.
    Artola A; Voisin D; Dallel R
    J Neural Transm (Vienna); 2020 Apr; 127(4):527-540. PubMed ID: 32108249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity.
    Luo C; Gangadharan V; Bali KK; Xie RG; Agarwal N; Kurejova M; Tappe-Theodor A; Tegeder I; Feil S; Lewin G; Polgar E; Todd AJ; Schlossmann J; Hofmann F; Liu DL; Hu SJ; Feil R; Kuner T; Kuner R
    PLoS Biol; 2012; 10(3):e1001283. PubMed ID: 22427743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational Control Mechanisms in Persistent Pain.
    Khoutorsky A; Price TJ
    Trends Neurosci; 2018 Feb; 41(2):100-114. PubMed ID: 29249459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemokines and pain mechanisms.
    Abbadie C; Bhangoo S; De Koninck Y; Malcangio M; Melik-Parsadaniantz S; White FA
    Brain Res Rev; 2009 Apr; 60(1):125-34. PubMed ID: 19146875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal Wnt5a Plays a Key Role in Spinal Dendritic Spine Remodeling in Neuropathic and Inflammatory Pain Models and in the Proalgesic Effects of Peripheral Wnt3a.
    Simonetti M; Kuner R
    J Neurosci; 2020 Aug; 40(35):6664-6677. PubMed ID: 32616667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRPs and pain.
    Dai Y
    Semin Immunopathol; 2016 May; 38(3):277-91. PubMed ID: 26374740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Modern concepts of coding mechanisms of the visceral pain stimuli].
    Filippova LV; Nozdrachev AD
    Fiziol Cheloveka; 2010; 36(1):125-37. PubMed ID: 20196457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MNK-eIF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain.
    Moy JK; Khoutorsky A; Asiedu MN; Black BJ; Kuhn JL; Barragán-Iglesias P; Megat S; Burton MD; Burgos-Vega CC; Melemedjian OK; Boitano S; Vagner J; Gkogkas CG; Pancrazio JJ; Mogil JS; Dussor G; Sonenberg N; Price TJ
    J Neurosci; 2017 Aug; 37(31):7481-7499. PubMed ID: 28674170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting cell surface trafficking of pain-facilitating receptors to treat chronic pain conditions.
    Ma W; Quirion R
    Expert Opin Ther Targets; 2014 Apr; 18(4):459-72. PubMed ID: 24512266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-permeable acid-sensing ion channel in nociceptive plasticity: a new target for pain control.
    Xu TL; Duan B
    Prog Neurobiol; 2009 Feb; 87(3):171-80. PubMed ID: 19388206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic GMP-dependent protein kinase-I localized in nociceptors modulates nociceptive cortical neuronal activity and pain hypersensitivity.
    Gangadharan V; Wang X; Luo C
    Mol Pain; 2017 Jan; 13():1744806917701743. PubMed ID: 28326941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nitric oxide in nociception.
    Luo ZD; Cizkova D
    Curr Rev Pain; 2000; 4(6):459-66. PubMed ID: 11060592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonergic neuromodulation of peripheral nociceptors.
    Loyd DR; Henry MA; Hargreaves KM
    Semin Cell Dev Biol; 2013 Jan; 24(1):51-7. PubMed ID: 23000387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain: Molecular Mechanisms and Pharmacology.
    Gegelashvili G; Bjerrum OJ
    Adv Neurobiol; 2017; 16():225-253. PubMed ID: 28828613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation/modulation of sensory neuron sodium channels.
    Chahine M; O'Leary ME
    Handb Exp Pharmacol; 2014; 221():111-35. PubMed ID: 24737234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity.
    Scherrer G; Low SA; Wang X; Zhang J; Yamanaka H; Urban R; Solorzano C; Harper B; Hnasko TS; Edwards RH; Basbaum AI
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22296-301. PubMed ID: 21135246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity.
    Balemans D; Boeckxstaens GE; Talavera K; Wouters MM
    Am J Physiol Gastrointest Liver Physiol; 2017 Jun; 312(6):G635-G648. PubMed ID: 28385695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.