These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23828645)

  • 21. Can we conquer pain?
    Scholz J; Woolf CJ
    Nat Neurosci; 2002 Nov; 5 Suppl():1062-7. PubMed ID: 12403987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors.
    Ovsepian SV; Waxman SG
    Nat Rev Neurosci; 2023 Apr; 24(4):252-265. PubMed ID: 36658346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Central sensitization: a generator of pain hypersensitivity by central neural plasticity.
    Latremoliere A; Woolf CJ
    J Pain; 2009 Sep; 10(9):895-926. PubMed ID: 19712899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An introduction to pain pathways and pain "targets".
    Das V
    Prog Mol Biol Transl Sci; 2015; 131():1-30. PubMed ID: 25744668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mode of action of cytokines on nociceptive neurons.
    Uçeyler N; Schäfers M; Sommer C
    Exp Brain Res; 2009 Jun; 196(1):67-78. PubMed ID: 19290516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion.
    Stösser S; Agarwal N; Tappe-Theodor A; Yanagisawa M; Kuner R
    Pain; 2010 Feb; 148(2):206-214. PubMed ID: 19879049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-affinity glutamate transporters in chronic pain: an emerging therapeutic target.
    Gegelashvili G; Bjerrum OJ
    J Neurochem; 2014 Dec; 131(6):712-30. PubMed ID: 25270665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium channels in normal and pathological pain.
    Dib-Hajj SD; Cummins TR; Black JA; Waxman SG
    Annu Rev Neurosci; 2010; 33():325-47. PubMed ID: 20367448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translating nociceptor sensitivity: the role of axonal protein synthesis in nociceptor physiology.
    Price TJ; Géranton SM
    Eur J Neurosci; 2009 Jun; 29(12):2253-63. PubMed ID: 19490023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The neurobiology of pain].
    Brodal P
    Tidsskr Nor Laegeforen; 2005 Sep; 125(17):2370-3. PubMed ID: 16151498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acutely dissociated sensory neurons: normal or neuropathic? Focus on: "Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP".
    LaMotte RH
    J Neurophysiol; 2007 Jan; 97(1):1-2. PubMed ID: 17035365
    [No Abstract]   [Full Text] [Related]  

  • 32. Commonalities between pain and memory mechanisms and their meaning for understanding chronic pain.
    Price TJ; Inyang KE
    Prog Mol Biol Transl Sci; 2015; 131():409-34. PubMed ID: 25744681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents.
    Lampert A; Eberhardt M; Waxman SG
    Handb Exp Pharmacol; 2014; 221():91-110. PubMed ID: 24737233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Type I Interferons Act Directly on Nociceptors to Produce Pain Sensitization: Implications for Viral Infection-Induced Pain.
    Barragán-Iglesias P; Franco-Enzástiga Ú; Jeevakumar V; Shiers S; Wangzhou A; Granados-Soto V; Campbell ZT; Dussor G; Price TJ
    J Neurosci; 2020 Apr; 40(18):3517-3532. PubMed ID: 32245829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects.
    Shaqura M; Li X; Al-Khrasani M; Shakibaei M; Tafelski S; Fürst S; Beyer A; Kawata M; Schäfer M; Mousa SA
    Neuropharmacology; 2016 Dec; 111():1-13. PubMed ID: 27558347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nociception in vertebrates: key receptors participating in spinal mechanisms of chronic pain in animals.
    Garry EM; Jones E; Fleetwood-Walker SM
    Brain Res Brain Res Rev; 2004 Oct; 46(2):216-24. PubMed ID: 15464209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Persistent postoperative pain: mechanisms and modulators.
    Gulur P; Nelli A
    Curr Opin Anaesthesiol; 2019 Oct; 32(5):668-673. PubMed ID: 31343465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal plasticity: increasing the gain in pain.
    Woolf CJ; Salter MW
    Science; 2000 Jun; 288(5472):1765-9. PubMed ID: 10846153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors.
    Petho G; Reeh PW
    Physiol Rev; 2012 Oct; 92(4):1699-775. PubMed ID: 23073630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception.
    Jang Y; Kim M; Hwang SW
    J Neuroinflammation; 2020 Jan; 17(1):30. PubMed ID: 31969159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.