These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23829)
21. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes. de Bruijne AW; Vreeburg H; van Steveninck J Biochim Biophys Acta; 1985 Feb; 812(3):841-4. PubMed ID: 3970911 [TBL] [Abstract][Full Text] [Related]
22. Membrane water channels and SH-groups. Sha'afi RI; Feinstein MB Adv Exp Med Biol; 1977; 84():67-83. PubMed ID: 899955 [TBL] [Abstract][Full Text] [Related]
23. Low- and high-Km transport of dinitrophenyl glutathione in inside out vesicles from human erythrocytes. Akerboom TP; Bartosz G; Sies H Biochim Biophys Acta; 1992 Jan; 1103(1):115-9. PubMed ID: 1730013 [TBL] [Abstract][Full Text] [Related]
24. Preferential uptake of D-glucose by isolated human erythrocyte membranes. Kahlenberg A; Urman B; Dolansky D Biochemistry; 1971 Aug; 10(16):3154-62. PubMed ID: 5126931 [No Abstract] [Full Text] [Related]
25. Valyl-tRNA synthetase from chick embryo brain. Properties of the sulfhydryl groups. Bölöni E Acta Biochim Biophys Acad Sci Hung; 1979; 14(4):259-70. PubMed ID: 553442 [TBL] [Abstract][Full Text] [Related]
26. The transport of glycolic acid by Chlamydomonas reinhardtii. Wilson BJ; Tolbert NE FEBS Lett; 1991 Feb; 279(2):313-5. PubMed ID: 2001745 [TBL] [Abstract][Full Text] [Related]
27. Effect of oxidative stress and erythropoietin on cytoskeletal protein and lipid organization in human erythrocytes. Choudhury TD; Das N; Chattopadhyay A; Datta AG Pol J Pharmacol; 1999; 51(4):341-50. PubMed ID: 10540966 [TBL] [Abstract][Full Text] [Related]
28. Specific cation modulation of anion transport across the human erythrocyte membrane. Low PS Biochim Biophys Acta; 1978 Dec; 514(2):264-73. PubMed ID: 32903 [No Abstract] [Full Text] [Related]
29. Relationship between H+ transfer through human erythrocyte membrane and temperature. Mishchenko AA; Irzhak LI Bull Exp Biol Med; 2004 Jul; 138(1):45-6. PubMed ID: 15514720 [TBL] [Abstract][Full Text] [Related]
30. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. De Bruijne AW; Vreeburg H; Van Steveninck J Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216 [TBL] [Abstract][Full Text] [Related]
31. [Comparison of acid and alkaline hemolysis mechanisms in human erythrocytes]. Ivanov IT Biofizika; 2001; 46(2):281-90. PubMed ID: 11357343 [TBL] [Abstract][Full Text] [Related]
32. [Role of the sulfhydryl group in the thiamine pyrophosphokinase activity of the rat liver]. Artsukevich IM; Voskoboev AI; Ostrovskiĭ IuM Vopr Med Khim; 1984; 30(2):108-12. PubMed ID: 6331000 [TBL] [Abstract][Full Text] [Related]
33. Lack of influence of membrane cholesterol depletion on anion and nonelectrolyte permeability of pig erythrocytes. Deuticke B; Zöllner C Biochim Biophys Acta; 1972 Jun; 266(3):726-31. PubMed ID: 5040252 [No Abstract] [Full Text] [Related]
34. Transport of 3-bromopyruvate across the human erythrocyte membrane. Sadowska-Bartosz I; Soszyński M; Ułaszewski S; Ko Y; Bartosz G Cell Mol Biol Lett; 2014 Jun; 19(2):201-14. PubMed ID: 24715475 [TBL] [Abstract][Full Text] [Related]
35. Effect of thiol-reactive reagents on the permeability of fish erythrocyte membrane for spin-labelled non-electrolytes. Gwoździński K Acta Biochim Pol; 1985; 32(2):127-30. PubMed ID: 4036446 [TBL] [Abstract][Full Text] [Related]
36. Purification and properties of cathepsin D from human erythrocytes. Reichelt D; Jacobsohn E; Haschen RJ Biochim Biophys Acta; 1974 Mar; 341(1):15-26. PubMed ID: 4208234 [No Abstract] [Full Text] [Related]
37. Transport of oxalic acid, glycollic acid, glyoxylic acid and benzoic acid by resealed erythrocyte 'ghosts' prepared by a dialysis technique [proceedings]. Hubbard AR; Sprandel U; Chalmers RA Biochem Soc Trans; 1979 Oct; 7(5):958-60. PubMed ID: 510756 [No Abstract] [Full Text] [Related]
38. Studies on the fragmentation of erythrocyte ghost membrane with p-chloromercuribenzoate in the micromolar range. Chetrite G; Dubreuil YL; Cassoly R Biochim Biophys Acta; 1983 May; 731(1):16-22. PubMed ID: 6849908 [TBL] [Abstract][Full Text] [Related]
39. The effects of sulfur, thiol, and thiol inhibitor compounds on arsine-induced toxicity in the human erythrocyte membrane. Rael LT; Ayala-Fierro F; Carter DE Toxicol Sci; 2000 Jun; 55(2):468-77. PubMed ID: 10828280 [TBL] [Abstract][Full Text] [Related]
40. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane. Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]