These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 23829220)

  • 1. Characterization of locomotor-related spike activity in protocerebrum of freely walking cricket.
    Kai K; Okada J
    Zoolog Sci; 2013 Jul; 30(7):591-601. PubMed ID: 23829220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking.
    Zorović M; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jan; 199(1):25-34. PubMed ID: 23104703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.
    Fukutomi M; Someya M; Ogawa H
    J Exp Biol; 2015 Dec; 218(Pt 24):3968-77. PubMed ID: 26519512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rearing conditions required for behavioral compensation after unilateral cercal ablation in the cricket Gryllus bimaculatus.
    Kanou M; Teshima N; Nagami T
    Zoolog Sci; 2002 Apr; 19(4):403-9. PubMed ID: 12130817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking.
    Zorović M; Hedwig B
    J Neurophysiol; 2011 May; 105(5):2181-94. PubMed ID: 21346206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local innervation patterns of the metathoracic flexor and extensor tibiae motor neurons in the cricket Gryllus bimaculatus.
    Nishino H
    Zoolog Sci; 2003 Jun; 20(6):697-707. PubMed ID: 12832820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive period in which walking affects recovery of direction of wind-evoked escape in the cricket Gryllus bimaculatus.
    Takuwa H; Kanou M
    Zoolog Sci; 2007 Apr; 24(4):331-7. PubMed ID: 17867831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of self-generated wind on compensational recovery of escape direction in unilaterally cercus-ablated crickets, Gryllus bimaculatus.
    Takuwa H; Ota S; Kanou M
    Zoolog Sci; 2008 Mar; 25(3):235-41. PubMed ID: 18393559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural activity in the central complex of the insect brain is linked to locomotor changes.
    Bender JA; Pollack AJ; Ritzmann RE
    Curr Biol; 2010 May; 20(10):921-6. PubMed ID: 20451382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus.
    Staudacher EM
    J Comp Physiol A; 2001 Feb; 187(1):1-17. PubMed ID: 11318373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed tracking of body and leg movements of a freely walking female cricket during phonotaxis.
    Petrou G; Webb B
    J Neurosci Methods; 2012 Jan; 203(1):56-68. PubMed ID: 21951620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of cricket cercal interneurons to realistic naturalistic stimuli in the field.
    Dupuy F; Steinmann T; Pierre D; Christidès JP; Cummins G; Lazzari C; Miller J; Casas J
    J Exp Biol; 2012 Jul; 215(Pt 14):2382-9. PubMed ID: 22723476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanism for generating and switching motor patterns of rhythmic movements of ovipositor valves in the cricket.
    Ogawa H; Kagaya K; Saito M; Yamaguchi T
    J Insect Physiol; 2011 Feb; 57(2):326-38. PubMed ID: 21147116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain.
    Terazima E; Yoshino M
    J Insect Physiol; 2010 Dec; 56(12):1746-54. PubMed ID: 20637212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural basis of stimulus-angle-dependent motor control of wind-elicited walking behavior in the cricket Gryllus bimaculatus.
    Oe M; Ogawa H
    PLoS One; 2013; 8(11):e80184. PubMed ID: 24244644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor output characterizing thanatosis in the cricket Gryllus bimaculatus.
    Nishino H
    J Exp Biol; 2004 Oct; 207(Pt 22):3899-915. PubMed ID: 15472021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genitalic autogrooming in the male cricket, Gryllus bimaculatus DeGeer.
    Kumashiro M; Iwano M; Sakai M
    Acta Biol Hung; 2008; 59 Suppl():137-48. PubMed ID: 18652386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defecation initiates walking in the cricket Gryllus bimaculatus.
    Naniwa K; Sugimoto Y; Osuka K; Aonuma H
    J Insect Physiol; 2019 Jan; 112():117-122. PubMed ID: 30468738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology of antennal motoneurons in the brains of two crickets, Gryllus bimaculatus and Gryllus campestris.
    Honegger HW; Allgäuer C; Klepsch U; Welker J
    J Comp Neurol; 1990 Jan; 291(2):256-68. PubMed ID: 2298934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.