BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 23829431)

  • 1. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors.
    Wang F; Liu X; Lu CH; Willner I
    ACS Nano; 2013 Aug; 7(8):7278-86. PubMed ID: 23829431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Os(II)--bisbipyridine--4-picolinic acid complex mediates the biocatalytic growth of au nanoparticles: optical detection of glucose and acetylcholine esterase inhibition.
    Xiao Y; Pavlov V; Shlyahovsky B; Willner I
    Chemistry; 2005 Apr; 11(9):2698-704. PubMed ID: 15729675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design.
    Shang L; Chen H; Deng L; Dong S
    Biosens Bioelectron; 2008 Feb; 23(7):1180-4. PubMed ID: 18068347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design.
    Zayats M; Baron R; Popov I; Willner I
    Nano Lett; 2005 Jan; 5(1):21-5. PubMed ID: 15792406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ growth of gold nanoparticles by enzymatic glucose oxidation within alginate gel matrix.
    Lim SY; Lee JS; Park CB
    Biotechnol Bioeng; 2010 Jan; 105(1):210-4. PubMed ID: 19718653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GelRed/[G
    Chen JQ; Xue SF; Chen ZH; Zhang S; Shi G; Zhang M
    Biosens Bioelectron; 2018 Feb; 100():526-532. PubMed ID: 28988027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles: nanotechnology-based sensing of nerve gases.
    Pavlov V; Xiao Y; Willner I
    Nano Lett; 2005 Apr; 5(4):649-53. PubMed ID: 15826103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor.
    Liao S; Qiao Y; Han W; Xie Z; Wu Z; Shen G; Yu R
    Anal Chem; 2012 Jan; 84(1):45-9. PubMed ID: 22148672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.
    Shuai Y; Liu C; Wang J; Cui X; Nie L
    Analyst; 2013 Jun; 138(11):3259-63. PubMed ID: 23616983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulated growth of nanoparticles. Application for sensing nerve gases.
    Virel A; Saa L; Pavlov V
    Anal Chem; 2009 Jan; 81(1):268-72. PubMed ID: 19049371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic deposition of Au nanoparticles on the designed electrode surface and its application in glucose detection.
    Zhang H; Liu R; Sheng Q; Zheng J
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):532-5. PubMed ID: 21115279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical biosensor of nanocube-augmented carbon nanotube networks.
    Claussen JC; Franklin AD; Ul Haque A; Porterfield DM; Fisher TS
    ACS Nano; 2009 Jan; 3(1):37-44. PubMed ID: 19206246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode.
    Hou S; Ou Z; Chen Q; Wu B
    Biosens Bioelectron; 2012 Mar; 33(1):44-9. PubMed ID: 22230694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme mimics of Au/Ag nanoparticles for fluorescent detection of acetylcholine.
    Wang CI; Chen WT; Chang HT
    Anal Chem; 2012 Nov; 84(22):9706-12. PubMed ID: 23101755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles.
    Wang M; Gu X; Zhang G; Zhang D; Zhu D
    Langmuir; 2009 Feb; 25(4):2504-7. PubMed ID: 19154124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated oligoaniline-cross-linked composites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems.
    Yehezkeli O; Yan YM; Baravik I; Tel-Vered R; Willner I
    Chemistry; 2009 Mar; 15(11):2674-9. PubMed ID: 19180594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles.
    Wang J; Li YF; Huang CZ; Wu T
    Anal Chim Acta; 2008 Sep; 626(1):37-43. PubMed ID: 18761119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection.
    Al-Ogaidi I; Gou H; Al-Kazaz AK; Aguilar ZP; Melconian AK; Zheng P; Wu N
    Anal Chim Acta; 2014 Feb; 811():76-80. PubMed ID: 24456597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidase-functionalized Fe(3)O(4) nanoparticles for fluorescence sensing of specific substrate.
    Liu CH; Tseng WL
    Anal Chim Acta; 2011 Oct; 703(1):87-93. PubMed ID: 21843679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle film assemblies as platforms for electrochemical biosensing--factors affecting the amperometric signal enhancement of hydrogen peroxide.
    Schmidt AR; Nguyen ND; Leopold MC
    Langmuir; 2013 Apr; 29(14):4574-83. PubMed ID: 23473024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.