These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23829468)

  • 21. Oxidation of Zn(Cys)4 zinc finger peptides by O2 and H2O2: products, mechanism and kinetics.
    Bourlès E; Isaac M; Lebrun C; Latour JM; Sénèque O
    Chemistry; 2011 Dec; 17(49):13762-72. PubMed ID: 22052717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation.
    Zhu X; Yuri I; Gan X; Suzuki I; Li G
    Biosens Bioelectron; 2007 Mar; 22(8):1600-4. PubMed ID: 16905304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.
    Little BK; Lockhart P; Slaten BL; Mills G
    J Phys Chem A; 2013 May; 117(20):4148-57. PubMed ID: 23654204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel iron(III) porphyrazine complex. Complex speciation and reactions with NO and H2O2.
    Theodoridis A; Maigut J; Puchta R; Kudrik EV; van Eldik R
    Inorg Chem; 2008 Apr; 47(8):2994-3013. PubMed ID: 18351731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles.
    Salimi A; Hallaj R; Soltanian S; Mamkhezri H
    Anal Chim Acta; 2007 Jun; 594(1):24-31. PubMed ID: 17560381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis.
    Chen G; Edwards T; D'souza VM; Holz RC
    Biochemistry; 1997 Apr; 36(14):4278-86. PubMed ID: 9100023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles.
    Milani N; McLaughlin MJ; Stacey SP; Kirby JK; Hettiarachchi GM; Beak DG; Cornelis G
    J Agric Food Chem; 2012 Apr; 60(16):3991-8. PubMed ID: 22480134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating.
    Petosa AR; Brennan SJ; Rajput F; Tufenkji N
    Water Res; 2012 Mar; 46(4):1273-85. PubMed ID: 22236555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Hydrogen peroxide in artificial photosynthesizing systems].
    Lobanov AV; Komissarov GG
    Biofizika; 2014; 59(2):215-30. PubMed ID: 25702472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.
    Nam SH; Kim SW; An YJ
    J Appl Toxicol; 2013 Oct; 33(10):1061-9. PubMed ID: 23161381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate).
    Brausam A; Eigler S; Jux N; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide.
    Zong S; Cao Y; Zhou Y; Ju H
    Langmuir; 2006 Oct; 22(21):8915-9. PubMed ID: 17014135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of temperature and pH on the kinetics of reactions between catalase and its suicide substrate hydrogen peroxide.
    Ghadermarzi M; Moosavi-Movahedi AA
    Ital J Biochem; 1997 Dec; 46(4):197-205. PubMed ID: 9541866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion release kinetics and particle persistence in aqueous nano-silver colloids.
    Liu J; Hurt RH
    Environ Sci Technol; 2010 Mar; 44(6):2169-75. PubMed ID: 20175529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles.
    He W; Zhou YT; Wamer WG; Boudreau MD; Yin JJ
    Biomaterials; 2012 Oct; 33(30):7547-55. PubMed ID: 22809647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation of zinc-thiolate complexes of biological interest by hydrogen peroxide: a theoretical study.
    Kassim R; Ramseyer C; Enescu M
    Inorg Chem; 2011 Jun; 50(12):5407-16. PubMed ID: 21598974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2.
    Wang H; Huang Y
    J Hazard Mater; 2011 Jul; 191(1-3):163-9. PubMed ID: 21570769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aqueous pathways for the formation of zinc oxide nanoparticles.
    Moezzi A; Cortie M; McDonagh A
    Dalton Trans; 2011 May; 40(18):4871-8. PubMed ID: 21412544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study.
    Ho CM; Wong CK; Yau SK; Lok CN; Che CM
    Chem Asian J; 2011 Sep; 6(9):2506-11. PubMed ID: 21608134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.