These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23829498)

  • 1. Single- and mixed-linker Cr-MIL-101 derivatives: a high-throughput investigation.
    Lammert M; Bernt S; Vermoortele F; De Vos DE; Stock N
    Inorg Chem; 2013 Aug; 52(15):8521-8. PubMed ID: 23829498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics.
    Reinsch H; Waitschat S; Stock N
    Dalton Trans; 2013 Apr; 42(14):4840-7. PubMed ID: 23364216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brønsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols.
    Herbst A; Khutia A; Janiak C
    Inorg Chem; 2014 Jul; 53(14):7319-33. PubMed ID: 25006999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flexibility of modified-linker MIL-53 materials.
    Munn AS; Pillai RS; Biswas S; Stock N; Maurin G; Walton RI
    Dalton Trans; 2016 Mar; 45(10):4162-8. PubMed ID: 26465320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient and acid-resistant metal-organic frameworks of MIL-101(Cr)-NH
    Lim CR; Lin S; Yun YS
    J Hazard Mater; 2020 Apr; 387():121689. PubMed ID: 31776079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MIL-53.
    Tang J; Chu Y; Li S; Xu J; Xiong W; Wang Q; Deng F
    Chemistry; 2021 Oct; 27(59):14711-14720. PubMed ID: 34357658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New functionalized flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) solids: syntheses, characterization, sorption, and breathing behavior.
    Biswas S; Ahnfeldt T; Stock N
    Inorg Chem; 2011 Oct; 50(19):9518-26. PubMed ID: 21899293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, characterization, and hydrogen storage capacity of MIL-53 metal-organic frameworks.
    Lin KS; Adhikari AK; Tu MT; Wang CH; Chiang CL
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2549-56. PubMed ID: 23763128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles.
    Vallés-García C; Cabrero-Antonino M; Navalón S; Álvaro M; Dhakshinamoorthy A; García H
    J Colloid Interface Sci; 2020 Feb; 560():885-893. PubMed ID: 31718791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative research on three types of MIL-101(Cr)-SO
    Ma L; Xu L; Jiang H; Yuan X
    RSC Adv; 2019 Feb; 9(10):5692-5700. PubMed ID: 35515897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL-101(Cr) for the Selective Oxidation of Alcohols with O
    Santiago-Portillo A; Cabrero-Antonino M; Álvaro M; Navalón S; García H
    Chemistry; 2019 Jul; 25(39):9280-9286. PubMed ID: 31063224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Precursor-based Solid-State Synthesis of Mixed-Linker Zr-MIL-140A.
    Leubner S; Siegel R; Franke J; Wharmby MT; Krebs C; Reinsch H; Senker J; Stock N
    Inorg Chem; 2020 Oct; 59(20):15250-15261. PubMed ID: 32993295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of aluminum-based metal-organic frameworks with different morphologies and structures through an OH(-)-assisted method.
    Lin Y; Kong C; Chen L
    Chem Asian J; 2013 Aug; 8(8):1873-8. PubMed ID: 23712941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The introduction of functional side groups and the application of the mixed-linker concept in divalent MIL-53(Ni) materials.
    Bitzer J; Titze-Alonso A; Roshdy A; Kleist W
    Dalton Trans; 2020 Jul; 49(26):9148-9154. PubMed ID: 32578640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isomorphous substitution in a flexible metal-organic framework: mixed-metal, mixed-valent MIL-53 type materials.
    Breeze MI; Clet G; Campo BC; Vimont A; Daturi M; Grenèche JM; Dent AJ; Millange F; Walton RI
    Inorg Chem; 2013 Jul; 52(14):8171-82. PubMed ID: 23815225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives.
    Oudi S; Oveisi AR; Daliran S; Khajeh M; Teymoori E
    J Colloid Interface Sci; 2020 Mar; 561():782-792. PubMed ID: 31761467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substituent-Induced Electron-Transfer Strategy for Selective Adsorption of N
    Zhang F; Shang H; Wang L; Ma L; Li K; Zhang Y; Yang J; Li L; Li J
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2146-2154. PubMed ID: 34935344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and post-synthetic modification of MIL-101(Cr)-NH2 via a tandem diazotisation process.
    Jiang D; Keenan LL; Burrows AD; Edler KJ
    Chem Commun (Camb); 2012 Dec; 48(99):12053-5. PubMed ID: 23079726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Dependent and Selective Crystallization of CAU-10 and MIL-53 Frameworks through Linker Nitration.
    Rabe T; Svensson Grape E; Engesser TA; Inge AK; Ströh J; Kohlmeyer-Yilmaz G; Wahiduzzaman M; Maurin G; Sönnichsen FD; Stock N
    Chemistry; 2021 May; 27(28):7696-7703. PubMed ID: 33566437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification.
    Modrow A; Zargarani D; Herges R; Stock N
    Dalton Trans; 2012 Jul; 41(28):8690-6. PubMed ID: 22692132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.