These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 23829498)
21. Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. Ahnfeldt T; Gunzelmann D; Loiseau T; Hirsemann D; Senker J; Férey G; Stock N Inorg Chem; 2009 Apr; 48(7):3057-64. PubMed ID: 19245258 [TBL] [Abstract][Full Text] [Related]
22. Sulfonyl chlorides as an efficient tool for the postsynthetic modification of Cr-MIL-101-SO3H and CAU-1-NH2. Klinkebiel A; Reimer N; Lammert M; Stock N; Lüning U Chem Commun (Camb); 2014 Aug; 50(66):9306-8. PubMed ID: 25000342 [TBL] [Abstract][Full Text] [Related]
23. Mixed-metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis acid catalysis and tandem C-C bond formation and alcohol oxidation. Mitchell L; Williamson P; Ehrlichová B; Anderson AE; Seymour VR; Ashbrook SE; Acerbi N; Daniels LM; Walton RI; Clarke ML; Wright PA Chemistry; 2014 Dec; 20(51):17185-97. PubMed ID: 25348903 [TBL] [Abstract][Full Text] [Related]
24. High-throughput aided synthesis of the porous metal-organic framework-type aluminum pyromellitate, MIL-121, with extra carboxylic acid functionalization. Volkringer C; Loiseau T; Guillou N; Férey G; Haouas M; Taulelle F; Elkaim E; Stock N Inorg Chem; 2010 Nov; 49(21):9852-62. PubMed ID: 20923169 [TBL] [Abstract][Full Text] [Related]
25. From the molecular behaviors of fullerene derivatives C50X2 (X = H, F, Cl, Br, OH) to the general parallels among isostructural derivatives of fullerenes and carbon nanotubes. Xu X; Shang Z; Li R; Cai Z; Zhao X Phys Chem Chem Phys; 2009 Oct; 11(38):8560-9. PubMed ID: 19774288 [TBL] [Abstract][Full Text] [Related]
26. Exploring the Role of Ligand Connectivity in MOFs Mechanical Stability: The Case of MIL-100(Cr). Celeste A; Fertey P; Itié JP; Blanita G; Zlotea C; Capitani F J Am Chem Soc; 2024 Apr; 146(13):9155-9162. PubMed ID: 38511254 [TBL] [Abstract][Full Text] [Related]
27. Mechanism for airborne ozone decomposition on X-MIL-53(Fe) (X = H, NH Ma J; Hu Z; Guo W; Ni C; Li P; Chen B; Chen S; Wang J; Guo Y J Hazard Mater; 2024 Dec; 480():135849. PubMed ID: 39298962 [TBL] [Abstract][Full Text] [Related]
28. Increasing the Complexity in the MIL-53 Structure: The Combination of the Mixed-Metal and the Mixed-Linker Concepts. Bitzer J; Teubnerová M; Kleist W Chemistry; 2021 Jan; 27(5):1724-1735. PubMed ID: 32930421 [TBL] [Abstract][Full Text] [Related]
29. Probing the limits of linker substitution in aluminum MOFs through water vapor sorption studies: mixed-MOFs instead of mixed-linker CAU-23 and MIL-160 materials. Schlüsener C; Jordan DN; Xhinovci M; Matemb Ma Ntep TJ; Schmitz A; Giesen B; Janiak C Dalton Trans; 2020 Jun; 49(22):7373-7383. PubMed ID: 32427259 [TBL] [Abstract][Full Text] [Related]
30. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. Hendon CH; Tiana D; Fontecave M; Sanchez C; D'arras L; Sassoye C; Rozes L; Mellot-Draznieks C; Walsh A J Am Chem Soc; 2013 Jul; 135(30):10942-5. PubMed ID: 23841821 [TBL] [Abstract][Full Text] [Related]
31. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks. Xin Q; Ouyang J; Liu T; Li Z; Li Z; Liu Y; Wang S; Wu H; Jiang Z; Cao X ACS Appl Mater Interfaces; 2015 Jan; 7(2):1065-77. PubMed ID: 25525969 [TBL] [Abstract][Full Text] [Related]
32. Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). Marx S; Kleist W; Huang J; Maciejewski M; Baiker A Dalton Trans; 2010 Apr; 39(16):3795-8. PubMed ID: 20372702 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. Surblé S; Millange F; Serre C; Düren T; Latroche M; Bourrelly S; Llewellyn PL; Férey G J Am Chem Soc; 2006 Nov; 128(46):14889-96. PubMed ID: 17105299 [TBL] [Abstract][Full Text] [Related]
34. XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). Volkringer C; Loiseau T; Guillou N; Férey G; Elkaïm E; Vimont A Dalton Trans; 2009 Mar; (12):2241-9. PubMed ID: 19274304 [TBL] [Abstract][Full Text] [Related]
35. Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Yang CX; Yan XP Anal Chem; 2011 Sep; 83(18):7144-50. PubMed ID: 21809852 [TBL] [Abstract][Full Text] [Related]
36. Reinvestigation of the M(II) (M = Ni, Co)/tetrathiafulvalenetetracarboxylate system using high-throughput methods: isolation of a molecular complex and its single-crystal-to-single-crystal transformation to a two-dimensional coordination polymer. Nguyen Tle A; Devic T; Mialane P; Rivière E; Sonnauer A; Stock N; Demir-Cakan R; Morcrette M; Livage C; Marrot J; Tarascon JM; Férey G Inorg Chem; 2010 Nov; 49(22):10710-7. PubMed ID: 20964449 [TBL] [Abstract][Full Text] [Related]
37. Aldehyde-alcohol reactions catalyzed under mild conditions by chromium(III) terephthalate metal organic framework (MIL-101) and phosphotungstic acid composites. Bromberg L; Hatton TA ACS Appl Mater Interfaces; 2011 Dec; 3(12):4756-64. PubMed ID: 22091761 [TBL] [Abstract][Full Text] [Related]
38. Immobilization of palladium silver nanoparticles on NH Han J; Zhang Z; Hao Z; Li G; Liu T J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240 [TBL] [Abstract][Full Text] [Related]
39. Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH Daliran S; Santiago-Portillo A; Navalón S; Oveisi AR; Álvaro M; Ghorbani-Vaghei R; Azarifar D; García H J Colloid Interface Sci; 2018 Dec; 532():700-710. PubMed ID: 30121522 [TBL] [Abstract][Full Text] [Related]