BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

702 related articles for article (PubMed ID: 23829571)

  • 1. Effect of the spacer structure on the stability of gold nanoparticles functionalized with monodentate thiolated poly(ethylene glycol) ligands.
    Schulz F; Vossmeyer T; Bastús NG; Weller H
    Langmuir; 2013 Aug; 29(31):9897-908. PubMed ID: 23829571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of thiol-containing polyethylene glycol (thiol-PEG) in the modification process of gold nanoparticles (AuNPs): stabilizer or coagulant?
    Wang W; Wei QQ; Wang J; Wang BC; Zhang SH; Yuan Z
    J Colloid Interface Sci; 2013 Aug; 404():223-9. PubMed ID: 23711661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles.
    Liu X; Huang N; Wang H; Li H; Jin Q; Ji J
    Biomaterials; 2013 Nov; 34(33):8370-81. PubMed ID: 23932246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved stability of "naked" gold nanoparticles enabled by in situ coating with mono and multivalent thiol PEG ligands.
    Zopes D; Stein B; Mathur S; Graf C
    Langmuir; 2013 Sep; 29(36):11217-26. PubMed ID: 23906521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal analysis of functional gold nanoparticles for biomedical applications.
    Tsai DH; Lu YF; DelRio FW; Cho TJ; Guha S; Zachariah MR; Zhang F; Allen A; Hackley VA
    Anal Bioanal Chem; 2015 Nov; 407(28):8411-22. PubMed ID: 26362156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive adsorption of thiolated poly(ethylene glycol) and alkane-thiols on gold nanoparticles and its effect on cluster formation.
    Larson-Smith K; Pozzo DC
    Langmuir; 2012 Sep; 28(37):13157-65. PubMed ID: 22924831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligothiol graft-copolymer coatings stabilize gold nanoparticles against harsh experimental conditions.
    Kang JS; Taton TA
    Langmuir; 2012 Dec; 28(49):16751-60. PubMed ID: 22957513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy.
    Tsai DH; Davila-Morris M; DelRio FW; Guha S; Zachariah MR; Hackley VA
    Langmuir; 2011 Aug; 27(15):9302-13. PubMed ID: 21726083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles.
    Tsai DH; Shelton MP; DelRio FW; Elzey S; Guha S; Zachariah MR; Hackley VA
    Anal Bioanal Chem; 2012 Dec; 404(10):3015-23. PubMed ID: 23104310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities.
    Oh E; Susumu K; Goswami R; Mattoussi H
    Langmuir; 2010 May; 26(10):7604-13. PubMed ID: 20121172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding enhancement of antigen-functionalized PEGylated gold nanoparticles onto antibody-immobilized surface by increasing the functionalized antigen using alpha-sulfanyl-omega-amino-PEG.
    Yoshimoto K; Hoshino Y; Ishii T; Nagasaki Y
    Chem Commun (Camb); 2008 Nov; (42):5369-71. PubMed ID: 18985213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions.
    Mei BC; Oh E; Susumu K; Farrell D; Mountziaris TJ; Mattoussi H
    Langmuir; 2009 Sep; 25(18):10604-11. PubMed ID: 19588955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide.
    Zhang X; Huang PJ; Servos MR; Liu J
    Langmuir; 2012 Oct; 28(40):14330-7. PubMed ID: 22989102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.
    Kim HJ; Takemoto H; Yi Y; Zheng M; Maeda Y; Chaya H; Hayashi K; Mi P; Pittella F; Christie RJ; Toh K; Matsumoto Y; Nishiyama N; Miyata K; Kataoka K
    ACS Nano; 2014 Sep; 8(9):8979-91. PubMed ID: 25133608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting colloidal stabilization factors in crowded polymer solutions by forming self-assembled monolayers on gold nanoparticles.
    Lang NJ; Liu B; Zhang X; Liu J
    Langmuir; 2013 May; 29(20):6018-24. PubMed ID: 23617539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins.
    Park G; Seo D; Chung IS; Song H
    Langmuir; 2013 Nov; 29(44):13518-26. PubMed ID: 24090031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective PEGylation of gold nanorods.
    Schulz F; Friedrich W; Hoppe K; Vossmeyer T; Weller H; Lange H
    Nanoscale; 2016 Apr; 8(13):7296-308. PubMed ID: 26975977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled formation and characterization of dithiothreitol-conjugated gold nanoparticle clusters.
    Tsai DH; Cho TJ; DelRio FW; Gorham JM; Zheng J; Tan J; Zachariah MR; Hackley VA
    Langmuir; 2014 Apr; 30(12):3397-405. PubMed ID: 24592809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides.
    Li J; Zhu B; Yao X; Zhang Y; Zhu Z; Tu S; Jia S; Liu R; Kang H; Yang CJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16800-7. PubMed ID: 25188540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.