BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

701 related articles for article (PubMed ID: 23829571)

  • 21. Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals.
    Palui G; Na HB; Mattoussi H
    Langmuir; 2012 Feb; 28(5):2761-72. PubMed ID: 22201293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-pot aqueous phase growth of biocompatible 15-130 nm gold nanoparticles stabilized with bidentate PEG.
    Oh E; Susumu K; Jain V; Kim M; Huston A
    J Colloid Interface Sci; 2012 Jun; 376(1):107-11. PubMed ID: 22480398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gold nanoparticles decorated with oligo(ethylene glycol) thiols: surface charges and interactions with proteins in solution.
    Schollbach M; Zhang F; Roosen-Runge F; Skoda MW; Jacobs RM; Schreiber F
    J Colloid Interface Sci; 2014 Jul; 426():31-8. PubMed ID: 24863761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study.
    Kah JC; Wong KY; Neoh KG; Song JH; Fu JW; Mhaisalkar S; Olivo M; Sheppard CJ
    J Drug Target; 2009 Apr; 17(3):181-93. PubMed ID: 19016072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions.
    Stewart MH; Susumu K; Mei BC; Medintz IL; Delehanty JB; Blanco-Canosa JB; Dawson PE; Mattoussi H
    J Am Chem Soc; 2010 Jul; 132(28):9804-13. PubMed ID: 20578776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanomechanical properties of polyethylene glycol brushes on gold substrates.
    Stan G; DelRio FW; MacCuspie RI; Cook RF
    J Phys Chem B; 2012 Mar; 116(10):3138-47. PubMed ID: 22335557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization.
    Harrison E; Nicol JR; Macias-Montero M; Burke GA; Coulter JA; Meenan BJ; Dixon D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():710-8. PubMed ID: 26952476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA-functionalized gold nanoparticles in macromolecularly crowded polymer solutions.
    Shin J; Zhang X; Liu J
    J Phys Chem B; 2012 Nov; 116(45):13396-402. PubMed ID: 23113659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles.
    Perumal S; Hofmann A; Scholz N; Rühl E; Graf C
    Langmuir; 2011 Apr; 27(8):4456-64. PubMed ID: 21413796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear penetration of surface functionalized gold nanoparticles.
    Gu YJ; Cheng J; Lin CC; Lam YW; Cheng SH; Wong WT
    Toxicol Appl Pharmacol; 2009 Jun; 237(2):196-204. PubMed ID: 19328820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size.
    Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL
    ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust ligand shells for biological applications of gold nanoparticles.
    Duchesne L; Gentili D; Comes-Franchini M; Fernig DG
    Langmuir; 2008 Dec; 24(23):13572-80. PubMed ID: 18991409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metallic cation induced one-dimensional assembly of poly(acrylic acid)-1-dodecanethiol-stabilized gold nanoparticles.
    Zhu L; Xue D; Wang Z
    Langmuir; 2008 Oct; 24(20):11385-9. PubMed ID: 18808165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold nanoparticles carrying diatomic molecules (O2 and CO) in aqueous solution.
    Karasugi K; Kitagishi H; Kano K
    Chem Asian J; 2011 Mar; 6(3):825-33. PubMed ID: 21265023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gold nanoparticles synthesis and stabilization via new "clicked" polyethyleneglycol dendrimers.
    Boisselier E; Diallo AK; Salmon L; Ruiz J; Astruc D
    Chem Commun (Camb); 2008 Oct; (39):4819-21. PubMed ID: 18830504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification and reactivity of functional groups in the ligand shell of PEGylated gold nanoparticles via a fluorescence-based assay.
    Maus L; Spatz JP; Fiammengo R
    Langmuir; 2009 Jul; 25(14):7910-7. PubMed ID: 19419188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor necrosis factor interaction with gold nanoparticles.
    Tsai DH; Elzey S; Delrio FW; Keene AM; Tyner KM; Clogston JD; Maccuspie RI; Guha S; Zachariah MR; Hackley VA
    Nanoscale; 2012 May; 4(10):3208-17. PubMed ID: 22481570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conjugation of peptides to the passivation shell of gold nanoparticles for targeting of cell-surface receptors.
    Maus L; Dick O; Bading H; Spatz JP; Fiammengo R
    ACS Nano; 2010 Nov; 4(11):6617-28. PubMed ID: 20939520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media.
    Mei BC; Susumu K; Medintz IL; Mattoussi H
    Nat Protoc; 2009; 4(3):412-23. PubMed ID: 19265800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery.
    Shenoy D; Fu W; Li J; Crasto C; Jones G; DiMarzio C; Sridhar S; Amiji M
    Int J Nanomedicine; 2006; 1(1):51-7. PubMed ID: 16467923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.