These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23829724)

  • 1. Wigner time-delay distribution in chaotic cavities and freezing transition.
    Texier C; Majumdar SN
    Phys Rev Lett; 2013 Jun; 110(25):250602. PubMed ID: 23829724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities.
    Cunden FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):060102. PubMed ID: 26172641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: application to the time-delay problem.
    Savin DV; Fyodorov YV; Sommers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):035202. PubMed ID: 11308697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetry breaking between statistically equivalent, independent channels in few-channel chaotic scattering.
    Mejía-Monasterio C; Oshanin G; Schehr G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):035203. PubMed ID: 22060443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fresnel representation of the Wigner function: an operational approach.
    Lougovski P; Solano E; Zhang ZM; Walther H; Mack H; Schleich WP
    Phys Rev Lett; 2003 Jul; 91(1):010401. PubMed ID: 12906520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manifestation of random first-order transition theory in Wigner glasses.
    Kang H; Kirkpatrick TR; Thirumalai D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042308. PubMed ID: 24229173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattering a pulse from a chaotic cavity: transitioning from algebraic to exponential decay.
    Hart JA; Antonsen TM; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016208. PubMed ID: 19257123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delay times and reflection in chaotic cavities with absorption.
    Savin DV; Sommers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036211. PubMed ID: 14524872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum transport through ballistic cavities: soft vs hard quantum chaos.
    Huckestein B; Ketzmerick R; Lewenkopf CH
    Phys Rev Lett; 2000 Jun; 84(24):5504-7. PubMed ID: 10990980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of a regime of Wigner ergodicity in microwave rough billiards.
    Hlushchuk Y; Sirko L; Kuhl U; Barth M; Stöckmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046208. PubMed ID: 11308931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of proper delay times in quantum chaotic scattering: a crossover from ideal to weak coupling.
    Sommers HJ; Savin DV; Sokolov VV
    Phys Rev Lett; 2001 Aug; 87(9):094101. PubMed ID: 11531567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density of proper delay times in chaotic and integrable quantum billiards.
    Crawford MG; Brouwer PW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026221. PubMed ID: 11863646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuation theorem for a deterministic one-particle system.
    Schmick M; Markus M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):065101. PubMed ID: 15697421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of the Wigner function of a one-photon Fock state in a cavity.
    Bertet P; Auffeves A; Maioli P; Osnaghi S; Meunier T; Brune M; Raimond JM; Haroche S
    Phys Rev Lett; 2002 Nov; 89(20):200402. PubMed ID: 12443461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coulomb explosion in dicationic noble gas clusters: a genetic algorithm-based approach to critical size estimation for the suppression of Coulomb explosion and prediction of dissociation channels.
    Nandy S; Chaudhury P; Bhattacharyya SP
    J Chem Phys; 2010 Jun; 132(23):234104. PubMed ID: 20572686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal nonequilibrium properties of dissipative Rydberg gases.
    Marcuzzi M; Levi E; Diehl S; Garrahan JP; Lesanovsky I
    Phys Rev Lett; 2014 Nov; 113(21):210401. PubMed ID: 25479477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Ehrenfest times for classically chaotic systems".
    Tomsovic S; Heller EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):038201; author reply 038202. PubMed ID: 14524936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of quantum jump trajectories in systems driven by classical fluctuations.
    Budini AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061106. PubMed ID: 21230643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of striped order in the classical lattice Coulomb gas.
    Lee SJ; Lee JR; Kim B
    Phys Rev Lett; 2002 Jan; 88(2):025701. PubMed ID: 11801025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum phase transitions to charge-ordered and Wigner-crystal states under the interplay of lattice commensurability and long-range Coulomb interactions.
    Noda Y; Imada M
    Phys Rev Lett; 2002 Oct; 89(17):176803. PubMed ID: 12398695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.