These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23829746)

  • 1. Observation of high-speed microscale superlubricity in graphite.
    Yang J; Liu Z; Grey F; Xu Z; Li X; Liu Y; Urbakh M; Cheng Y; Zheng Q
    Phys Rev Lett; 2013 Jun; 110(25):255504. PubMed ID: 23829746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of microscale superlubricity in graphite.
    Liu Z; Yang J; Grey F; Liu JZ; Liu Y; Wang Y; Yang Y; Cheng Y; Zheng Q
    Phys Rev Lett; 2012 May; 108(20):205503. PubMed ID: 23003154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load-induced dynamical transitions at graphene interfaces.
    Peng D; Wu Z; Shi D; Qu C; Jiang H; Song Y; Ma M; Aeppli G; Urbakh M; Zheng Q
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12618-12623. PubMed ID: 32457159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions.
    Peng D; Wang J; Jiang H; Zhao S; Wu Z; Tian K; Ma M; Zheng Q
    Natl Sci Rev; 2022 Jan; 9(1):nwab109. PubMed ID: 35070329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally activated depinning motion of contact lines in pseudopartial wetting.
    Du L; Bodiguel H; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012402. PubMed ID: 25122310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The high-speed sliding friction of graphene and novel routes to persistent superlubricity.
    Liu Y; Grey F; Zheng Q
    Sci Rep; 2014 May; 4():4875. PubMed ID: 24786521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural superlubricity in graphite flakes assembled under ambient conditions.
    Deng H; Ma M; Song Y; He Q; Zheng Q
    Nanoscale; 2018 Jul; 10(29):14314-14320. PubMed ID: 30019038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a superlubricity nanometer interface by Raman spectroscopy.
    Shi Y; Yang X; Liu B; Dong H; Zheng Q
    Nanotechnology; 2016 Aug; 27(32):325701. PubMed ID: 27348089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotational Instability in Superlubric Joints.
    Qu C; Shi S; Ma M; Zheng Q
    Phys Rev Lett; 2019 Jun; 122(24):246101. PubMed ID: 31322388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust microscale structural superlubricity between graphite and nanostructured surface.
    Huang X; Li T; Wang J; Xia K; Tan Z; Peng D; Xiang X; Liu B; Ma M; Zheng Q
    Nat Commun; 2023 May; 14(1):2931. PubMed ID: 37217500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a Microscale Superlubric Graphite Interface.
    Wang K; Qu C; Wang J; Quan B; Zheng Q
    Phys Rev Lett; 2020 Jul; 125(2):026101. PubMed ID: 32701344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation and Characterization of Submillimeter Shearing Contacts in Graphite by the Micro-Dome Technique.
    Yang D; Qu C; Gongyang Y; Zheng Q
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44563-44571. PubMed ID: 37672630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling nanoscale friction through the competition between capillary adsorption and thermally activated sliding.
    Greiner C; Felts JR; Dai Z; King WP; Carpick RW
    ACS Nano; 2012 May; 6(5):4305-13. PubMed ID: 22515940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of temperature and velocity on superlubricity.
    van den Ende JA; de Wijn AS; Fasolino A
    J Phys Condens Matter; 2012 Nov; 24(44):445009. PubMed ID: 23037889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning.
    Ravelosona D; Lacour D; Katine JA; Terris BD; Chappert C
    Phys Rev Lett; 2005 Sep; 95(11):117203. PubMed ID: 16197041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and hysteresis of the contact line between liquid hydrogen and cesium substrates.
    Rolley E; Guthmann C
    Phys Rev Lett; 2007 Apr; 98(16):166105. PubMed ID: 17501436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally rounded depinning of an elastic interface on a washboard potential.
    Kolton AB; Jagla EA
    Phys Rev E; 2020 Nov; 102(5-1):052120. PubMed ID: 33327099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.
    Chung IY; Lee J
    Ultrasonics; 2015 Feb; 56():220-6. PubMed ID: 25106111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superlubricity of graphite.
    Dienwiebel M; Verhoeven GS; Pradeep N; Frenken JW; Heimberg JA; Zandbergen HW
    Phys Rev Lett; 2004 Mar; 92(12):126101. PubMed ID: 15089689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.