These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 23829836)
1. Bacillus subtilis natto: a non-toxic source of poly-γ-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. Bhat AR; Irorere VU; Bartlett T; Hill D; Kedia G; Morris MR; Charalampopoulos D; Radecka I AMB Express; 2013 Jul; 3(1):36. PubMed ID: 23829836 [TBL] [Abstract][Full Text] [Related]
2. Cryoprotection of probiotic bacteria with poly-γ-glutamic acid produced by Gomaa EZ J Genet Eng Biotechnol; 2016 Dec; 14(2):269-279. PubMed ID: 30647625 [TBL] [Abstract][Full Text] [Related]
3. Improving survival of probiotic bacteria using bacterial poly-γ-glutamic acid. Bhat AR; Irorere VU; Bartlett T; Hill D; Kedia G; Charalampopoulos D; Nualkaekul S; Radecka I Int J Food Microbiol; 2015 Mar; 196():24-31. PubMed ID: 25506798 [TBL] [Abstract][Full Text] [Related]
4. Optimized production of poly (γ-glutamic acid) (γ-PGA) using Bacillus licheniformis and its application as cryoprotectant for probiotics. Xavier JR; Madhan Kumarr MM; Natarajan G; Ramana KV; Semwal AD Biotechnol Appl Biochem; 2020 Nov; 67(6):892-902. PubMed ID: 31880345 [TBL] [Abstract][Full Text] [Related]
5. Study on the mechanism of production of γ-PGA and nattokinase in Bacillus subtilis natto based on RNA-seq analysis. Li M; Zhang Z; Li S; Tian Z; Ma X Microb Cell Fact; 2021 Apr; 20(1):83. PubMed ID: 33836770 [TBL] [Abstract][Full Text] [Related]
6. Efficient Production of γ-Polyglutamic Acid by Bacillus subtilis (natto) in Jar Fermenters. Ogawa Y; Yamaguchi F; Yuasa K; Tahara Y Biosci Biotechnol Biochem; 1997 Jan; 61(10):1684-7. PubMed ID: 27393164 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of nattokinase against the production of poly (γ-glutamic Acid) in Bacillus subtilis natto. Wang L; Liu N; Yu C; Chen J; Hong K; Zang Y; Wang M; Nie G Biotechnol Lett; 2020 Nov; 42(11):2285-2291. PubMed ID: 32596743 [TBL] [Abstract][Full Text] [Related]
9. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Hosoi T; Ametani A; Kiuchi K; Kaminogawa S Can J Microbiol; 2000 Oct; 46(10):892-7. PubMed ID: 11068675 [TBL] [Abstract][Full Text] [Related]
10. A circular bioprocess application of algal-based substrate for Parati M; Philip C; Mendrek B; Townrow D; Khalil I; Tchuenbou-Magaia F; Stanley M; Kowalczuk M; Adamus G; Radecka I Front Chem; 2023; 11():1158147. PubMed ID: 37153520 [TBL] [Abstract][Full Text] [Related]
11. Late-onset anaphylaxis due to poly (γ-glutamic acid) in the soup of commercial cold Chinese noodles in a patient with allergy to fermented soybeans (natto). Inomata N; Chin K; Nagashima M; Ikezawa Z Allergol Int; 2011 Sep; 60(3):393-6. PubMed ID: 21430437 [TBL] [Abstract][Full Text] [Related]
12. Bacillus subtilis var. natto increases the resistance of Caenorhabditis elegans to gram-positive bacteria. Katayama R; Matsumoto Y; Higashi Y; Sun S; Sasao H; Tanimoto Y; Nishikawa Y; Kage-Nakadai E J Appl Microbiol; 2021 Dec; 131(6):3032-3042. PubMed ID: 34157196 [TBL] [Abstract][Full Text] [Related]
13. Draft Genome Sequence of Bacillus subtilis subsp. natto Strain CGMCC 2108, a High Producer of Poly-γ-Glutamic Acid. Tan S; Meng Y; Su A; Zhang C; Ren Y Genome Announc; 2016 May; 4(3):. PubMed ID: 27231363 [TBL] [Abstract][Full Text] [Related]
14. SwrAA activates poly-gamma-glutamate synthesis in addition to swarming in Bacillus subtilis. Osera C; Amati G; Calvio C; Galizzi A Microbiology (Reading); 2009 Jul; 155(Pt 7):2282-2287. PubMed ID: 19389763 [TBL] [Abstract][Full Text] [Related]
15. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Yu Y; Yan F; Chen Y; Jin C; Guo JH; Chai Y Front Microbiol; 2016; 7():1811. PubMed ID: 27891125 [No Abstract] [Full Text] [Related]
16. Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Kimura K; Itoh Y Appl Environ Microbiol; 2003 May; 69(5):2491-7. PubMed ID: 12732513 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of natural killer cell activity by oral administration of a fermented soybean product in dogs. Mikawa S; Matsuda A; Kamemori Y; Asanuma S; Kitagawa H Open Vet J; 2021; 11(3):394-400. PubMed ID: 34722202 [TBL] [Abstract][Full Text] [Related]
18. Alkaline serine protease AprE plays an essential role in poly-γ-glutamate production during natto fermentation. Kada S; Ishikawa A; Ohshima Y; Yoshida K Biosci Biotechnol Biochem; 2013; 77(4):802-9. PubMed ID: 23563567 [TBL] [Abstract][Full Text] [Related]
19. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. Sun P; Wang JQ; Zhang HT J Dairy Sci; 2010 Dec; 93(12):5851-5. PubMed ID: 21094758 [TBL] [Abstract][Full Text] [Related]
20. Regulatory phosphorylation of poly-γ-glutamic acid with phosphate salts in the culture of Bacillus subtilis (natto). Kurita O; Umetani K; Kokean Y; Maruyama H; Sago T; Iwamoto H World J Microbiol Biotechnol; 2018 Apr; 34(4):60. PubMed ID: 29623446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]